Advertisement

These tests are available only in specialized andrology laboratories. The tests are not standardized thus making interpretation difficult. If used singly, a sperm function test may not be helpful in fertility assessment. They are more predictive if used in combination.
 
Postcoital (Sims-Huhner) Test
 
This is the examination of the cervical mucus after coitus and assesses the ability of the sperm to penetrate the cervical mucus. The quality of the cervical mucus varies during the menstrual cycle, becoming more abundant and fluid at the time of ovulation (due to effect of estrogen); this facilitates penetration of the mucus by the spermatozoa. Progesterone in the secretory phase increases viscosity of the mucus. Therefore cervical mucus testing is scheduled just before ovulation (determined by basal body temperature records or follicular sizing by ultrasonography). Postcoital test is the traditional method to detect the cervical factor in infertility. Cervical mucus is aspirated with a syringe shortly before the expected time of ovulation and 2-12 hours after intercourse. Gross and microscopic examinations are carried out to assess the quality of cervical mucus (elasticity and drying pattern) and to evaluate the number and motility of sperms (Box 834.1). If ≥ 10 motile sperms are observed the test is considered as normal. An abnormal test may result from: (a) poor quality of cervical mucus due to wrong judgment of ovulation, cervicitis or treatment with antioestrogens (e.g. Clomid), and (b) absence of motile sperms due to ineffective technique of coitus, lack of ejaculation, poor semen quality, use of coital lubricants that damage the sperm, or presence of antisperm antibodies. Antisperm antibodies cause immotile sperms, or agglutination or clumping of sperms; they may be present in either partner. If cervical factor is present, intrauterine insemination is the popular treatment. The value of the postcoital test is disputed in the medical literature.
 
Box 834.1 Interpretation of postcoital test
  • Normal: Sperms are normal in amount and moving forward in the mucus; mucus stretches atleast 2 inches (5 cm) and dries in a fern-like manner.
  • Abnormal: Absence of sperms or large number of sperms are dead or sperms are clumped; cervical mucus cannot stretch 2 inches (5 cm) or does not dry in a fern-like manner.
 
This test can be carried out if semen analysis is normal, and the female partner is ovulating and fallopian tubes are not blocked. It is also done if antisperm antibodies are suspected and male partner refuses semen analysis.
 
Cervical Mucus Penetration Test
 
In this test, greatest distance traveled by the sperm in seminal fluid placed and incubated in a capillary tube containing bovine mucus is measured. Majority of fertile men show score >30 mm, while most infertile men show scores <20 mm.
 
Hamster Egg Penetration Assay
 
Hamster oocytes are enzymatically treated to remove the outer layers (that inhibit cross-species fertilization). They are then incubated with sperms and observed for penetration rate. It can be reported as (a) Number of eggs penetrated (penetration rate <15% indicates low fertility), or as (b) Number of sperm penetrations per egg (Normal >5). This test detects sperm motility, binding to oocyte, and penetration of oocyte. There is a high incidence of false-negative results.
 
Hypo-osmotic Swelling of Flagella
 
This test assesses the functional integrity of the plasma membrane of the sperm by observing curling of flagella in hypo-osmotic conditions.
 
Computer-assisted Semen Analysis
 
Computer software measures various characteristics of the spermatozoa; however, its role in predicting fertility potential is not confirmed.
ANTISPERM ANTIBODIES
 
The role of antisperm antibodies in causation of male infertility is controversial. The immunological tests done on seminal fluid include mixed antiglobulin reaction (MAR test) and immunobead test.
 
The antibodies against sperms immobilize or kill them, thus preventing their passage through the cervix to the ovum. The antibodies can be tested in the serum, seminal fluid, or cervical mucus. If the antibodies are present bound to the head of the sperm, they will prevent the penetration of the egg by the sperm. If antibodies are bound to the tail of the sperm, they will retard motility.
 
a. SpermMAR™ test: This test can detect IgG and IgA antibodies against sperm surface in semen sample. In direct SpermMAR™ IgG test, a drop each of semen (fresh and unwashed), IgG-coated latex particles, and anti-human immunoglobulin are mixed together on a glass slide. At least 200 motile spermatozoa are examined. If the spermatozoa have antibodies on their surface, antihuman immunoglobulin will bind IgG-coated latex particles to IgG on the surface of the spermatozoa; this will cause attachment of latex particles to spermatozoa, and motile, swimming sperms with attached particles will be seen. If the spermatozoa do not have antibodies on their surface, they will be seen swimming without attached particles; the latex particles will show clumping due to binding of their IgG to antihuman immunoglobulin.
 
In direct SpermMAR™ IgA test, a drop each of fresh unwashed semen and of IgA-coated latex particles, are mixed on a glass slide. The latex particles will bind to spermatozoa if spermatozoa are coated with IgA antibodies.
 
In indirect SpermMAR™ tests, fluid without spermatozoa (e.g. serum) is tested for the presence of antisperm antibodies. First, antibodies are bound to donor spermatozoa which are then mixed with the fluid to be analyzed. These antibodies are then detected as described above for direct tests.

Atleast 200 motile spermatozoa should be counted. If >50% of spermatozoa show attached latex particles, immunological problem is likely.
 
b. Immunobead test: Antibodies bound to the surface of the spermatozoa can be detected by antibodies attached to immunobeads (plastic particles with attached anti-human immunoglobulin that may be either IgG, IgA, or IgM). Percentage of motile spermatozoa with attached two or more immunobeads are counted amongst 200 motile spermatozoa. Finding of >50% spermatozoa with attached beads is abnormal.
The most important test in semen analysis for infertility is microscopic examination of the semen.
 
SPERM MOTILITY
 
The first laboratory assessment of sperm function in a wet preparation is sperm motility (ability of the sperms to move). Sperm motility is essential for penetration of cervical mucus, traveling through the fallopian tube, and penetrating the ovum. Only those sperms having rapidly progressive motility are capable of penetrating ovum and fertilizing it.
 
Principle: All motile and non-motile sperms are counted in randomly chosen fields in a wet preparation under 40× objective. Result is expressed as a percentage of motile spermatozoa observed.
 
Method: A drop of semen is placed on a glass slide, covered with a coverslip that is then ringed with petroleum jelly to prevent dehydration, and examined under 40× objective. Atleast 200 spermatozoa are counted in several different microscopic fields. Result is expressed as a percentage of (a) rapidly progressive spermatozoa (moving fast forward in a straight line), (b) slowly progressive spermatozoa (slow linear or non-linear, i.e. crooked or curved movement), (c) non-progressive spermatozoa (movement of tails, but with no forward progress), and (d) immotile spermatozoa (no movement at all) (WHO critera). Sperms of grades (c) and (d) are considered to be poorly motile (asthenospermia). Normally, ≥ 25% of sperms show rapid progressive motility, or ≥ 50% of sperms show rapid progressive and slow progressive motility.
 
If the proportion of motile spermatozoa is < 50%, then proportion of viable sperms should be determined by examining an eosin preparation.
 
SPERM VIABILITY OR VITALITY
 
Principle: A cell with intact cell membrane (a vital or viable cell) will not take up the eosin Y and will not be stained, while a non-viable or dead cell will have damaged cell membrane, will take up the dye, and will be stained pink-red (Figure 832.1). Another stain (e.g. nigrosin) may  be used to stain the background material. The test is performed if motility is abnormal.
 
Figure 832.1 Eosin nigrosin stain
Figure 832.1 Eosin-nigrosin stain. Dead sperms are stained pink-red, while live sperms are stained white
 
Method
 
  1. Mix one drop of semen with 1 drop of eosin-nigrosin solution and incubate for 30 seconds.
  2. A smear is made from a drop placed on a glass slide.
  3. The smear is air-dried and examined under oilimmersion objective. White sperms are classified as live or viable, and red sperms are classified as dead or non-viable. At least 200 spermatozoa are examined.
  4. The result is expressed as a proportion of viable sperms against non-viable as an integer percentage.
 
Seventy-five percent or more of sperms are normally live or viable.
 
SPERM COUNT
 
Principle: The sperm count is done after liquefaction in a counting chamber following dilution and the total number of spermatozoa is reported in millions/ml (106/ml).
 
Method
 
  1. Semen is diluted 1:20 with sodium bicarbonateformalin diluting fluid (Take 1 ml liquefied semen in a graduated tube and fill with diluting fluid to 20 ml mark. Mix well).
  2. A coverslip is placed over the improved Neubauer counting chamber and the counting chamber is filled with the well-mixed diluted semen sample using a Pasteur pipette. The chamber is then placed in a humid box for 10-15 minutes for spermatozoa to settle.
  3. The chamber is placed on the microscope stage. Using the 20× or 40× objective and iris diaphragm lowered sufficiently to give sufficient contrast, number of spermatozoa is counted in 4 large corner squares. Spermatozoa whose heads are touching left and upper lines of the square should be considered as ‘belonging’ to that square.
  4. Sperm count per ml is calculated as follows:

    Sperm count =                Sperms counted × correction factor             × 1000
                              Number of squares counted × Volume of 1 square
                           = Sperms counted × 20 1000
                                        4 × 0.1
                           = Sperms counted × 50, 000

  5. Normal sperm count is ≥ 20 million/ml (i.e. ≥ 20 × 106/ml). Sperm count < 20 million/ml may be associated with infertility in males.
 
SPERM MORPHOLOGY
 
A smear is prepared by spreading a drop of seminal fluid on a glass slide, stained, and percentages of normal and abnormal forms of spermatozoa are counted. The staining techniques used are Papanicolaou, eosinnigrosin, hematoxylin-eosin, and Rose Bengal-toluidine blue stain. Atleast 200 spermatozoa should be counted under oil immersion. Percentages of normal and abnormal spermatozoa should be recorded.
 
Normal morphology: A spermatozoon consists of three main components: head, neck, and tail. Tail is further subdivided into midpiece, main (principle) piece, and end piece (Figure 832.2 and Box 832.1).
 
Figure 832.2 Morphology of spermatozoa
Figure 832.2 Morphology of spermatozoa
 
Head is pear-shaped. Most of the head is occupied by the nucleus which has condensed chromatin and few areas of dispersed chromatin (called nuclear vacuoles). The anterior 2/3rds of the nucleus is surrounded by acrosomal cap. Acrosomal cap is a flattened membranebound vesicle containing glycoproteins and enzymes. These enzymes are required for separation of cells of corona radiata and dissolution of zona pellucida of ovum during fertilization.
 
Neck is a very short segment that connects the head and the tail. Centriole in the neck gives rise to axoneme of the flagellum. Axoneme consists of 20 microtubules (arranged as a central pair surrounded by 9 peripheral doublets) and is surrounded by condensed fibrous rings.
 
Middle piece is the first part of the tail and consists of central axoneme surrounded by coarse longitudinal fibers. These are surrounded by elongated mitochondria that provide energy for movement of tail.
 
Principle or main piece constitutes most of the tail and is composed of axoneme that is surrounded by 9 coarse fibers. This central core is surrounded by many circularly arranged fibrous ribs.
 
Endpiece is the short tapering part composed of only axoneme.
 
Normally, > 30% of spermatozoa should show normal morphology (WHO, 1999). The defects in morphology that are associated with infertility in males include defective mid-piece (causes reduced motility), an incomplete or absent acrosome (causes inability to penetrate the ovum), and giant head (defective DNA condensation).
 
Box 832.1 Normal sperm morphology
• Total length of sperm: About 60 μ
• Total length of sperm: About 60 μ
• Head:
   – Length: 3-5 μ
   – Width: 2-3 μ
   – Thickness: 1.5 μ
• Neck: Length: 0.3 μ
• Middle piece:
   – Length: 3-5 μ
   – Width: 1.0 μ
• Principal piece:
   – Length: 40-50 μ
   – Width: 0.5 μ
• End piece: 4-6 μ
 
Abnormal morphology (Figure 832.3): WHO morphological classification of human spermatozoa (1999) is given below:
 
  1. Normal sperm
  2. Defects in head:
    • Large heads
    • Small heads
    • Tapered heads
    • Pyriform heads
    • Round heads
    • Amorphous heads
    • Vacuolated heads (> 20% of the head area occupied by vacuoles)
    • Small acrosomes (occupying < 40% of head area)
    • Double heads
  3. Defects in neck:
    • Bent neck and tail forming an angle >90° to the long axis of head
  4. Defects in middle piece:
    • Asymmetric insertion of midpiece into head
    • Thick or irregular midpiece
    • Abnormally thin midpiece
  5. Defects in tail:
    • Bent tails
    • Short tails
    • Coiled tails
    • Irregular tails
    • Multiple tails
    • Tails with irregular width
  6. Pin heads: Not to be counted
  7. Cytoplasmic droplets
    • > 1/3rd the size of the sperm head
  8. Precursor cells: Considered abnormal
 
Figure 832.3 Abnormal morphological sperm forms
Figure 832.3 Abnormal morphological sperm forms: (1) Normal sperm, (2) Large head, (3) Small head, (4) Tapered head, (5) Pyriform head, (6) Round head, (7) Amorphous head, (8) Vacuoles in head, (9) Round head without acrosome, (10) Double head, (11) Pin head, (12) Round head without acrosome and thick midpiece, (13) Coiled tail, and (14) Double tail

ROUND CELLS
 
Round cells on microscopic examination may be white blood cells or immature sperm cells. Special stain (peroxidase or Papanicolaou) is required to differentiate between them. White blood cells >1 million/ml indicate presence of infection. Presence of large number of immature sperm cells indicates spermatogenesis dysfunction at the testicular level.
Biochemical markers (Table 831.1) can be measured in semen to test the secretions of accessory structures. These include fructose (seminal vesicles), zinc, citric acid or acid phosphatase (prostate), and α-glucosidase or carnitine (epididymis).
 
Table 831.1 Biochemical variables of semen analysis (World Helath Organization, 1992)
1. Total fructose (seminal vesicle marker) ≥13 μmol/ejaculate
2. Total zinc (Prostate marker) ≥2.4 μmol/ejaculate
3. Total acid phosphatase (Prostate marker) ≥200U/ejaculate
4. Total citric acid (Prostate marker) ≥52 μmol/ejaculate
5. α-glucosidase (Epididymis marker) ≥20 mU/ejaculate
6. Carnitine (Epididymis marker) 0.8-2.9 μmol/ejaculate
 
TEST FOR FRUCTOSE
 
Resorcinol method is used for detection of fructose. In this test, 5 ml of resorcinol reagent (50 mg resorcinol dissolved in 33 ml concentrated hydrochloric acid; dilute up to 100 ml with distilled water) is added to 0.5 ml of seminal fluid. The mixture is heated and brought to boil. If fructose is present, a red-colored precipitate is formed within 30 seconds.
 
Absence of fructose indicates obstruction proximal to seminal vesicles (obstructed or absent vas deferens) or a lack of seminal vesicles. In a case of azoospermia, if fructose is absent, it is due to the obstruction of ejaculatory ducts or absence of vas deferens, and if present, azoospermia is due to failure of testes to produce sperm.
Examination is carried out after liquefaction of semen that occurs usually within 20-30 minutes of ejaculation.
 
1. VISUAL APPEARANCE
 
Normal semen is viscous and opaque gray-white in appearance. After prolonged abstinence, it appears slightly yellow.
 
 
Immediately following ejaculation, normal semen is thick and viscous. It becomes liquefied within 30 minutes by the action of proteolytic enzymes secreted by prostate. If liquefaction does not occur within 60 minutes, it is abnormal. The viscosity of the sample is assessed by filling a pipette with semen and allowing it to flow back into the container. Normal semen will fall drop by drop. If droplets form ‘threads’ more than 2 cm long, then viscosity is increased. Increased semen viscosity affects sperm motility and leads to poor invasion of cervical mucus; it results from infection of seminal vesicles or prostate.
 
3. VOLUME
 
Volume of ejaculated semen sample should normally be > 2 ml. It is measured after the sample has liquefied. Volume < 2.0 ml is abnormal, and is associated with low sperm count.
 
4. pH
 
A drop of liquefied semen is spread on pH paper (of pH range 6.4-8.0) and pH is recorded after 30 seconds. Normal pH is 7.2 to 8.0 after 1 hour of ejaculation. The portion of semen contributed by seminal vesicles is basic, while portion from prostate is acidic. Low pH (< 7.0) with absence of sperms (azoospermia) suggests obstruction of ejaculatory ducts or absence of vas deferens. Low pH is usually associated with low semen volume (as most of the volume is supplied by seminal vesicles).

This includes examination of material obtained from vagina, stains from clothing, skin, hair, or other body parts for semen. This is carried out in cases of alleged rape or sexual assault.

Collection of Sample

  • Vagina: Direct aspiration or saline lavage
  • Clothing: When scanned with ultraviolet light, semen produces green white fluorescence. A small piece (1 m2) of clothing from stained portion is soaked in 1-2 ml of physiologic saline for 1 hour. A similar piece of clothing distant from the stain is also soaked in saline as a control.

LABORATORY PROCEDURES

1. MICROSCOPIC EXAMINATION FOR SPERMS

Presence of motile sperms in vaginal fluid indicates interval of < 8 hours. Smears prepared from collected samples are stained and examined for the presence of sperms.

2. ACID PHOSPHATASE

Acid phosphatase is determined on vaginal or clothing samples. Due to the high level of acid phosphatase in semen, its presence indicates recent sexual intercourse. Level of ≥50 U/sample is considered as positive evidence of semen.

3. DETERMINATION OF BLOOD GROUP SUBSTANCES

When semen is positively identified in vaginal fluid or other sample, test can be carried out for the presence of blood group substances in the same sample. The ‘secretor’ individuals (80% individuals are secretors) will secrete the blood group substances in body fluids, including semen.

4. FLORENCE TEST

This test detects the presence of choline found in high concentration in semen. To several drops of sample, add equal volume of reagent (iodine 2.54 g, potassium iodide 1.65 g, distilled water 30 ml); in positive test rhombic or needle-like crystals of periodide of choline form. False-positive tests can occur due to high choline content of some other body fluids.

1. MICROSCOPIC EXAMINATION OF URINARY SEDIMENT

Definition of microscopic hematuria is presence of 3 or more number of red blood cells per high power field on microscopic examination of urinary sediment in two out of three properly collected samples. A small number of red blood cells in urine of low specific gravity may undergo lysis, and therefore hematuria may be missed if only microscopic examination is done. Therefore, microscopic examination of urine should be combined with a chemical test.

2. CHEMICAL TESTS

These detect both intracellular and extracellular hemoglobin (i.e. intact and lysed red cells) as well as myoglobin. Heme proteins in hemoglobin act as peroxidase, which reduces hydrogen peroxide to water. This process needs a hydrogen donor (benzidine, orthotoluidine, or guaiac). Oxidation of hydrogen donor leads to development of a color (Figure 828.1). Intensity of color produced is proportional to the amount of hemoglobin present.

Chemical tests are positive in hematuria, hemoglobinuria, and myoglobinuria.

Figure 828.1 Principle of chemical test for red cells
Figure 828.1 Principle of chemical test for red cells, hemoglobin, or myoglobin in urine

Benzidine Test

Make saturated solution of benzidine in glacial acetic acid. Mix 1 ml of this solution with 1 ml of hydrogen peroxide in a test tube. Add 2 ml of urine. If green or blue color develops within 5 minutes, the test is positive.

Orthotoluidine Test

In this test, instead of benzidine, orthotoluidine is used. It is more sensitive than benzidine test.

Reagent Strip Test

Various reagent strips are commercially available which use different chromogens (o-toluidine, tetramethylbenzidine).

Causes of false-positive tests:

  • Contamination of urine by menstrual blood in females
  • Contamination of urine by oxidizing agent (e.g. hypochlorite or bleach used to clean urine containers), or microbial peroxidase in urinary tract infection.

Causes of false-negative tests:

  • Presence of a reducing agent like ascorbic acid in high concentration: Microscopic examination for red cells is positive but chemical test is negative.
  • Use of formalin as a preservative for urine

Evaluation of positive chemical test for blood is shown in Figure 828.2.

Figure 828.2 Evaluation of positive chemical test for blood in urine
Figure 828.2 Evaluation of positive chemical test for blood in urine
Have you ever wondered, what is your physiological age? Is it more or less than your chronological age? Physiological age determines a person’s health condition. Are we able to determine physiological age? You would think the answer is NO. but it can be done by determining telomere’s length. “Telomere is a repetitive nucleotide sequence (having no meaningful information) at each end of chromosome to protect DNA from deterioration and or from fusion with other chromosomes.” This sequence is about 3000-15000 base pairs in length. In vertebrates this repeated sequence is TTAGGG.
 
Significance of Telomeres
 
Cells divide and increase their number, DNA duplication also occurs. Enzymes involved in this duplication process, can’t continue duplication all the way to the end so some part of DNA is lost and chromosome is shortened. This lost part is some base pairs of telomere. Somatic cells lose about 50-100 nucleotides on each cell division. In this way, telomeres, having no meaningful information, act as CAPS preventing the important information (DNA) from deterioration and preserve the critical information. Telomeres are never tied to each other which allows chromosomes to remain segregate. Without telomeres, chromosomes would fuse with each other. Telomere Shortening Telomeres shorten because of the two major factors:
 
  1. End replication problem in eukaryotes accounts for loss of 20 base pairs per cell division.
  2. Oxidative stress accounts for loss of 50-100 base pairs per cell division.
 
Figure 827.1
 
Oxidative stress in the body depends on lifestyle factors. Smoking, poor diet and stress can cause increase in oxidative stress. With each cell division telomeres shorten, so there are limited number of divisions that a cell can undergo, this limit is called Hayflick Limit. This is to prevent the loss of vital DNA information and to prevent production of abnormal cells. When a cell reaches this limit it undergoes apoptosis that is a programmed cell death. Telomere Lengthening to reverse telomere shortening, there is an enzyme named Telomerase that adds telomere sequence nucleotides and replenish the lost telomere nucleotides. Telomerase activity is not present in all cells. It is almost absent in somatic cells including; lung, liver, kidney cells, adult tissues, cardiac and skeletal muscles etc. In the presence of telomerase enzyme, a cell can divide to unlimited extent without ageing giving rise to tumors. That’s why it is found only in some cells in considerable concentration including germline cells and stem cells. These cells don’t show signs of ageing.
 
Figure 827.3
 
Relation between Telomere’s Shortening and Ageing
 
Figure 827.2It is still controversial that whether telomere shortening is a reason of ageing or is a sign of ageing just like grey hair. Whatever it is, the thing is, it determines your physiological age because ageing cells mean an ageing body. Telomere shortening is related with poor lifestyle. People who are active and have a healthy lifestyle have the same telomere length as someone 10 years younger than them has. Depression causes increase in oxidative stress in the body so the higher the stress, the shorter the telomere is Link between Telomeres and Cancer “Cancer in general is defined as an uncontrollable rapid growth of cells.”
 
What causes these cells to grow uncontrollably?
 
These cells have active telomerase enzyme, which doesn’t let the telomere to shorten, so no Hayflick limit reaches and cell continues to divide. This is the reason why telomerase is not used as an anti-ageing medicine because it has potential to turn normal body cells into cancerous cells. Without telomerase activity cancer cells activity would stop, which is an under research treatment for cancer. However, drugs inhibiting telomerase activity, can interfere with normal functioning of cells that require telomerase. In healthy female breast there is a portion of cells named, luminal progenitors, with critically short telomere length. In these cells telomerase becomes active causing these cells to turn into cancer cells on higher activity. To tackle breast cancer, use of telomerase inhibiting drugs should be practiced. Telomere biology is very important for understanding cancer biology and scientists are working hard on it.
 
 
Reviewed by Dr. Nida Hayat Khan
Editor @ BioScience.pk 

The chemical examination is carried out for substances in urine are listed below:

  • Proteins
  • Glucose
  • Ketones
  • Bilirubin
  • Bile salts
  • Urobilinogen
  • Blood
  • Hemoglobin
  • Myoglobin
  • Nitrite or leukocyte esterase

PROTEINS

Normally, kidneys excrete scant amount of protein in urine (up to 150 mg/24 hours). These proteins include proteins from plasma (albumin) and proteins derived from urinary tract (Tamm-Horsfall protein, secretory IgA, and proteins from tubular epithelial cells, leucocytes, and other desquamated cells); this amount of proteinuria cannot be detected by routine tests.

(Tamm-Horsfall protein is a normal mucoprotein secreted by ascending limb of the loop of Henle).

Proteinuria refers to protein excretion in urine greater than 150 mg/24 hours in adults.

Causes of Proteinuria

Box 826.1: Causes of proteinuria
  • Glomerular proteinuria
  • Tubular proteinuria
  • Overflow proteinuria
  • Hemodynamic (functional) proteinuria
  • Post-renal proteinuria

Causes of proteinuria can be grouped as shown in Box 826.1.

  • Glomerular proteinuria: Proteinuria due to increased permeability of glomerular capillary wall is called as glomerular proteinuria.

    There are two types of glomerular proteinuria: selective and nonselective. In early stages of glomerular disease, there is increased excretion of lower molecular weight proteins like albumin and transferrin. When glomeruli can retain larger molecular weight proteins but allow passage of comparatively lower molecular weight proteins, the proteinuria is called as selective. With further glomerular damage, this selectivity is lost and larger molecular weight proteins (γ globulins) are also excreted along with albumin; this is called as nonselective proteinuria.

    Selective and nonselective proteinuria can be distinguished by urine protein electrophoresis. In selective proteinuria, albumin and transferrin bands are seen, while in nonselective type, the pattern resembles that of serum (Figure 826.1).

    • Massive proteinuria (>3.5 gm/24 hr)
    • Hypoalbuminemia (<3.0 gm/dl)
    • Generalised edema
    • Hyperlipidemia (serum cholesterol >350 mg/dl)
    • Lipiduria
    Causes of glomerular proteinuria are glomerular diseases that cause increased permeability of glomerular basement membrane. The degree of glomerular proteinuria correlates with severity of disease and prognosis. Serial estimations of urinary protein are also helpful in monitoring response to treatment. Most severe degree of proteinuria occurs in nephrotic syndrome (Box 826.2).

  • Tubular proteinuria: Normally, glomerular membrane, although impermeable to high molecular weight proteins, allows ready passage to low molecular weight proteins like β2-microglobulin, retinol-binding protein, lysozyme, α1-microglobulin, and free immunoglobulin light chains. These low molecular weight proteins are actively reabsorbed by proximal renal tubules. In diseases involving mainly tubules, these proteins are excreted in urine while albumin excretion is minimal.

    Urine electrophoresis shows prominent α- and β-bands (where low molecular weight proteins migrate) and a faint albumin band (Figure 826.1).

    Tubular type of proteinuria is commonly seen in acute and chronic pyelonephritis, heavy metal poisoning, tuberculosis of kidney, interstitial nephritis, cystinosis, Fanconi syndrome and rejection of kidney transplant.

    Purely tubular proteinuria cannot be detected by reagent strip test (which is sensitive to albumin), but heat and acetic acid test and sulphosalicylic acid test are positive.

  • Overflow proteinuria: When concentration of a low molecular weight protein rises in plasma, it “overflows” from plasma into the urine. Such proteins are immunoglobulin light chains or Bence Jones proteins (plasma cell dyscrasias), hemoglobin (intravascular hemolysis), myoglobin (skeletal muscle trauma), and lysozyme (acute myeloid leukemia type M4 or M5).

  • Hemodynamic proteinuria: Alteration of blood flow through the glomeruli causes increased filtration of proteins. Protein excretion, however, is transient. It is seen in high fever, hypertension, heavy exercise, congestive cardiac failure, seizures, and exposure to cold.

    Postural (orthostatic) proteinuria occurs when the subject is standing or ambulatory, but is absent in recumbent position. It is common in adolescents (3-5%) and is probably due to lordotic posture that causes inferior venacaval compression between the liver and vertebral column. The condition disappears in adulthood. Amount of proteinuria is <1000 mg/day. First-morning urine after rising is negative for proteins, while another urine sample collected after patient performs normal activities is positive for proteins. In such patients, periodic testing for proteinuria should be done to rule out renal disease.

  • Post-renal proteinuria: This is caused by inflammatory or neoplastic conditions in renal pelvis, ureter, bladder, prostate, or urethra.

Further reading: Tests for Detection of Proteinuria

Figure 826.1 Glomerular and tubular proteinuria
Figure 826.1 Glomerular and tubular proteinuria. Upper figure shows normal serum protein electrophoresis pattern. Lower part shows comparison of serum and urine electrophoresis in (1) selective proteinuria, (2) non-selective proteinuria, and (3) tubular proteinuria

GLUCOSE

The main indication for testing for glucose in urine is detection of unsuspected diabetes mellitus or follow-up of known diabetic patients.

Box 826.3: Urine glucose
  • Urine should be tested for glucose within 2 hours of collection (due to lowering of glucose by glycolysis and by contaminating bacteria which degrade glucose rapidly)
  • Reagent strip test is a rapid, inexpensive, and semi-quantitative test
  • In the past this test was used for home-monitoring of glucose; the test is replaced by glucometers.
  • Urine glucose cannot be used to monitor control of diabetes since renal threshold is variable amongst individuals, no information about level of blood glucose below renal threshold is obtained, and urinary glucose value is affected by concentration of urine.

Practically all of the glucose filtered by the glomeruli is reabsorbed by the proximal renal tubules and returned to circulation. Normally a very small amount of glucose is excreted in urine (< 500 mg/24 hours or <15 mg/dl) that cannot be detected by the routine tests. Presence of detectable amounts of glucose in urine is called as glucosuria or glycosuria (Box 826.3). Glycosuria results if the filtered glucose load exceeds the capacity of renal tubular reabsorption. Most common cause is hyperglycemia from diabetes mellitus.

Causes of Glycosuria

1. Glycosuria with hyperglycemia:

  • Endocrine diseases: diabetes mellitus, acromegaly, Cushing’s syndrome, hyperthyroidism, pancreatic disease
  • Non-endocrine diseases: central nervous system diseases, liver disorders
  • Drugs: adrenocorticotrophic hormone, corticosteroids, thiazides
  • Alimentary glycosuria (Lag-storage glycosuria): After a meal, there is rapid intestinal absorption of glucose leading to transient elevation of blood glucose above renal threshold. This can occur in persons with gastrectomy or gastrojejunostomy and in hyperthyroidism. Glucose tolerance test reveals a peak at 1 hour above renal threshold (which causes glycosuria); the fasting and 2-hour glucose values are normal.

2. Glycosuria without hyperglycemia

  • Renal glycosuria: This accounts for 5% of cases of glycosuria in general population. Renal threshold is the highest glucose level in blood at which glucose appears in urine and which is detectable by routine laboratory tests. The normal renal threshold for glucose is 180 mg/dl. Threshold substances need a carrier to transport them from tubular lumen to blood. When the carrier is saturated, the threshold is reached and the substance is excreted. Up to this level glucose filtered by the glomeruli is efficiently reabsorbed by tubules. Renal glycosuria is a benign condition in which renal threshold is set below 180 mgs/dl but glucose tolerance is normal; the disorder is transmitted as autosomal dominant. Other conditions in which glycosuria can occur with blood glucose level remaining below 180 mgs/dl are renal tubular diseases in which there is decreased glucose reabsorption like Fanconi’s syndrome, and toxic renal tubular damage. During pregnancy, renal threshold for glucose is decreased. Therefore it is necessary to estimate blood glucose when glucose is first detected in urine.

Further reading: Tests for Detection of Glucose in Urine

KETONES

Excretion of ketone bodies (acetoacetic acid, β-hydroxybutyric acid, and acetone) in urine is called as ketonuria. Ketones are breakdown products of fatty acids and their presence in urine is indicative of excessive fatty acid metabolism to provide energy.

Causes of Ketonuria

Box 826.4: Urine ketones in diabetes
Indications for testing
  • At diagnosis of diabetes mellitus
  • At regular intervals in all known cases of diabetes, and in gestational diabetes
  • In known diabetic patients during acute illness, persistent hyperglycemia (>300 mg/dl), pregnancy, clinical evidence of diabetic acidosis (nausea, vomiting, abdominal pain)

Normally ketone bodies are not detectable in the urine of healthy persons. If energy requirements cannot be met by metabolism of glucose (due to defective carbohydrate metabolism, low carbohydrate intake, or increased metabolic needs), then energy is derived from breakdown of fats. This leads to the formation of ketone bodies (Figure 826.2).

  1. Decreased utilization of carbohydrates:
    a. Uncontrolled diabetes mellitus with ketoacidosis: In diabetes, because of poor glucose utilization, there is compensatory increased lipolysis. This causes increase in the level of free fatty acids in plasma. Degradation of free fatty acids in the liver leads to the formation of acetoacetyl CoA which then forms ketone bodies. Ketone bodies are strong acids and produce H+ ions, which are neutralized by bicarbonate ions; fall in bicarbonate (i.e. alkali) level produces ketoacidosis. Ketone bodies also increase the plasma osmolality and cause cellular dehydration. Children and young adults with type 1 diabetes are especially prone to ketoacidosis during acute illness and stress. If glycosuria is present, then test for ketone bodies must be done. If both glucose and ketone bodies are present in urine, then it indicates presence of diabetes mellitus with ketoacidosis (Box 826.4).
    In some cases of diabetes, ketone bodies are increased in blood but do not appear in urine.
    Presence of ketone bodies in urine may be a warning of impending ketoacidotic coma.
    b. Glycogen storage disease (von Gierke’s disease)
  2. Decreased availability of carbohydrates in the diet:
    a. Starvation
    b. Persistent vomiting in children
    c. Weight reduction program (severe carbohydrate restriction with normal fat intake)
  3. Increased metabolic needs:
    a. Fever in children
    b. Severe thyrotoxicosis
    c. Pregnancy
    d. Protein calorie malnutrition

Further reading: Tests for Detection of Ketones in Urine

Figure 826.2 Formation of ketone bodies
Figure 826.2 Formation of ketone bodies. A small part of acetoacetate is spontaneously and irreversibly converted to acetone. Most is converted reversibly to β-hydroxybutyrate

BILE PIGMENT (BILIRUNIN)

Bilirubin (a breakdown product of hemoglobin) is undetectable in the urine of normal persons. Presence of bilirubin in urine is called as bilirubinuria.

There are two forms of bilirubin: conjugated and unconjugated. After its formation from hemoglobin in reticuloendothelial system, bilirubin circulates in blood bound to albumin. This is called as unconjugated bilirubin. Unconjugated bilirubin is not water-soluble, is bound to albumin, and cannot pass through the glomeruli; therefore it does not appear in urine. The liver takes up unconjugated bilirubin where it combines with glucuronic acid to form bilirubin diglucuronide (conjugated bilirubiun). Conjugated bilirubin is watersoluble, is filtered by the glomeruli, and therefore appears in urine.

Detection of bilirubin in urine (along with urobilinogen) is helpful in the differential diagnosis of jaundice (Table 826.1).

Table 826.1 Urine bilirubin and urobilinogen in jaundice
Urine test Hemolytic jaundice Hepatocellular jaundice Obstructive jaundice
1. Bilirubin Absent Present Present
2. Urobilinogen Increased Increased Absent

In acute viral hepatitis, bilirubin appears in urine even before jaundice is clinically apparent. In a fever of unknown origin bilirubinuria suggests hepatitis.

Presence of bilirubin in urine indicates conjugated hyperbilirubinemia (obstructive or hepatocellular jaundice). This is because only conjugated bilirubin is water-soluble. Bilirubin in urine is absent in hemolytic jaundice; this is because unconjugated bilirubin is water-insoluble.

Further reading: Tests for Detection of Bilirubin in Urine

BILE SALTS

Bile salts are salts of four different types of bile acids: cholic, deoxycholic, chenodeoxycholic, and lithocholic. These bile acids combine with glycine or taurine to form complex salts or acids. Bile salts enter the small intestine through the bile and act as detergents to emulsify fat and reduce the surface tension on fat droplets so that enzymes (lipases) can breakdown the fat. In the terminal ileum, bile salts are absorbed and enter in the blood stream from where they are taken up by the liver and re-excreted in bile (enterohepatic circulation).

Further reading: Test for Detection of Bile Salts in Urine

UROBILINOGEN

Conjugated bilirubin excreted into the duodenum through bile is converted by bacterial action to urobilinogen in the intestine. Major part is eliminated in the feces. A portion of urobilinogen is absorbed in blood, which undergoes recycling (enterohepatic circulation); a small amount, which is not taken up by the liver, is excreted in urine. Urobilinogen is colorless; upon oxidation it is converted to urobilin, which is orange-yellow in color. Normally about 0.5-4 mg of urobilinogen is excreted in urine in 24 hours. Therefore, a small amount of urobilinogen is normally detectable in urine.

Urinary excretion of urobilinogen shows diurnal variation with highest levels in afternoon. Therefore, a 2-hour post-meal sample is preferred.

Causes of Increased Urobilinogen in Urine

  1. Hemolysis: Excessive destruction of red cells leads to hyperbilirubinemia and therefore increased formation of urobilinogen in the gut. Bilirubin, being of unconjugated type, does not appear in urine. Increased urobilinogen in urine without bilirubin is typical of hemolytic anemia. This also occurs in megaloblastic anemia due to premature destruction of erythroid precursors in bone marrow (ineffective erythropoiesis).
  2. Hemorrhage in tissues: There is increased formation of bilirubin from destruction of red cells.

Causes of Reduced Urobilinogen in Urine

  1. Obstructive jaundice: In biliary tract obstruction, delivery of bilirubin to the intestine is restricted and very little or no urobilinogen is formed. This causes stools to become clay-colored.
  2. Reduction of intestinal bacterial flora: This prevents conversion of bilirubin to urobilinogen in the intestine. It is observed in neonates and following antibiotic treatment.

Testing of urine for both bilirubin and urobilinogen can provide helpful information in a case of jaundice (Table 826.1).

Further reading: Tests for Detection of Urobilinogen in Urine

BLOOD

The presence of abnormal number of intact red blood cells in urine is called as hematuria. It implies presence of a bleeding lesion in the urinary tract. Bleeding in urine may be noted macroscopically or with naked eye (gross hematuria). If bleeding is noted only by microscopic examination or by chemical tests, then it is called as occult, microscopic or hidden hematuria.

Causes of Hematuria

1. Diseases of urinary tract:

  • Glomerular diseases: Glomerulonephritis, Berger’s disease, lupus nephritis, Henoch-Schonlein purpura
  • Nonglomerular diseases: Calculus, tumor, infection, tuberculosis, pyelonephritis, hydronephrosis, polycystic kidney disease, trauma, after strenuous physical exercise, diseases of prostate (benign hyperplasia of prostate, carcinoma of prostate).

2. Hematological conditions:

Coagulation disorders, sickle cell disease Presence of red cell casts and proteinuria along with hematuria suggests glomerular cause of hematuria.

Further reading: Tests for Detection of Blood in Urine

HEMOGLOBIN

Presence of free hemoglobin in urine is called as hemoglobinuria.

Causes of Hemoglobinuria

  1. Hematuria with subsequent lysis of red blood cells in urine of low specific gravity.
  2. Intravascular hemolysis: Hemoglobin will appear in urine when haptoglobin (to which hemoglobin binds in plasma) is completely saturated with hemoglobin. Intravascular hemolysis occurs in infections (severe falciparum malaria, clostridial infection, E. coli septicemia), trauma to red cells (march hemoglobinuria, extensive burns, prosthetic heart valves), glucose-6-phosphate dehydrogenase deficiency following exposure to oxidant drugs, immune hemolysis (mismatched blood transfusion, paroxysmal cold hemoglobinuria), paroxysmal nocturnal hemoglobinuria, hemolytic uremic syndrome, and disseminated intravascular coagulation.

Tests for Detection of Hemoglobinuria

Tests for detection of hemoglobinuria are benzidine test, orthotoluidine test, and reagent strip test.

HEMOSIDERIN

Hemosiderin in urine (hemosiderinuria) indicates presence of free hemoglobin in plasma. Hemosiderin appears as blue granules when urine sediment is stained with Prussian blue stain (Figure 826.3). Granules are located inside tubular epithelial cells or may be free if cells have disintegrated. Hemosiderinuria is seen in intravascular hemolysis.

Figure 826.3 Staining of urine sediment with Prussian blue stain
Figure 826.3 Staining of urine sediment with Prussian blue stain to demonstrate hemosiderin granules (blue)

MYOGLOBIN

Myoglobin is a protein present in striated muscle (skeletal and cardiac) which binds oxygen. Causes of myoglobinuria include injury to skeletal or cardiac muscle, e.g. crush injury, myocardial infarction, dermatomyositis, severe electric shock, and thermal burns.

Chemical tests used for detection of blood or hemoglobin also give positive reaction with myoglobin (as both hemoglobin and myoglobin have peroxidase activity). Ammonium sulfate solubility test is used as a screening test for myoglobinuria (Myoglobin is soluble in 80% saturated solution of ammonium sulfate, while hemoglobin is insoluble and is precipitated. A positive chemical test for blood done on supernatant indicates myoglobinuria).

Distinction between hematuria, hemoglobinuria, and myoglobinuria is shown in Table 826.2

Table 826.2 Differentiation between hematuria, hemoglobinuria, and myoglobinuria
Parameter Hematuria Hemoglobinuria Myoglobinuria
1. Urine color Normal, smoky, red, or brown Pink, red, or brown Red or brown
2. Plasma color Normal Pink Normal
3. Urine test based on peroxidase activity Positive Positive Positive
4. Urine microscopy Many red cells Occasional red cell Occasional red cell
5. Serum haptoglobin Normal Low Normal
6. Serum creatine kinase Normal Normal Markedly increased

Chemical Tests for Significant Bacteriuria (Indirect Tests for Urinary Tract Infection)

In addition to direct microscopic examination of urine sample, chemical tests are commercially available in a reagent strip format that can detect significant bacteriuria: nitrite test and leucocyte esterase test. These tests are helpful at places where urine microscopy is not available. If these tests are positive, urine culture is indicated.

1. Nitrite test: Nitrites are not present in normal urine; ingested nitrites are converted to nitrate and excreted in urine. If gram-negative bacteria (e.g. E.coli, Salmonella, Proteus, Klebsiella, etc.) are present in urine, they will reduce the nitrates to nitrites through the action of bacterial enzyme nitrate reductase. Nitrites are then detected in urine by reagent strip tests. As E. coli is the commonest organism causing urinary tract infection, this test is helpful as a screening test for urinary tract infection.

Some organisms like Staphylococci or Pseudomonas do not reduce nitrate to nitrite and therefore in such infections nitrite test is negative. Also, urine must be retained in the bladder for minimum of 4 hours for conversion of nitrate to nitrite to occur; therefore, fresh early morning specimen is preferred. Sufficient dietary intake of nitrate is necessary. Therefore a negative nitrite test does not necessarily indicate absence of urinary tract infection. The test detects about 70% cases of urinary tract infections.

2. Leucocyte esterase test: It detects esterase enzyme released in urine from granules of leucocytes. Thus the test is positive in pyuria. If this test is positive, urine culture should be done. The test is not sensitive to leucocytes < 5/HPF.

Microscopic examination of urine is also called as the “liquid biopsy of the urinary tract”.

Urine consists of various microscopic, insoluble, solid elements in suspension. These elements are classified as organized or unorganized. Organized substances include red blood cells, white blood cells, epithelial cells, casts, bacteria, and parasites. The unorganized substances are crystalline and amorphous material. These elements are suspended in urine and on standing they settle down and sediment at the bottom of the container; therefore they are known as urinary deposits or urinary sediments. Examination of urinary deposit is helpful in diagnosis of urinary tract diseases as shown in Table 825.1.

Table 825.1 Urinary findings in renal diseases
Condition Albumin RBCs/HPF WBCs/HPF Casts/LPF Others
1. Normal 0-trace 0-2 0-2 Occasional (Hyaline)
2. Acute glomerulonephritis 1-2+ Numerous;dysmorphic 0-few Red cell, granular Smoky urine or hematuria
3. Nephrotic syndrome > 4+ 0-few 0-few Fatty, hyaline, Waxy, epithelial Oval fat bodies, lipiduria
4. Acute pyelonephritis 0-1+ 0-few Numerous WBC, granular WBC clumps, bacteria, nitrite test
HPF: High power field; LPF: Low power field; RBCs: Red blood cells; WBCs: White blood cells.

Different types of urinary sediments are shown in Figure 825.1. The major aim of microscopic examination of urine is to identify different types of cellular elements and casts. Most crystals have little clinical significance.

Figure 825.1 Different types of urinary sediment
Figure 825.1 Different types of urinary sediment

Specimen

The cellular elements are best preserved in acid, hypertonic urine; they deteriorate rapidly in alkaline, hypotonic solution. A mid-stream, freshly voided, first morning specimen is preferred since it is the most concentrated. The specimen should be examined within 2 hours of voiding because cells and casts degenerate upon standing at room temperature. If preservative is required, then 1 crystal of thymol or 1 drop of formalin (40%) is added to about 10 ml of urine.

Method

A well-mixed sample of urine (12 ml) is centrifuged in a centrifuge tube for 5 minutes at 1500 rpm and supernatant is poured off. The tube is tapped at the bottom to resuspend the sediment (in 0.5 ml of urine). A drop of this is placed on a glass slide and covered with a cover slip (Figure 825.2). The slide is examined immediately under the microscope using first the low power and then the high power objective. The condenser should be lowered to better visualize the elements by reducing the illumination.

Figure 825.2 Preparation of urine sediment for microscopic examination
Figure 825.2 Preparation of urine sediment for microscopic examination

CELLS

Cellular elements in urine are shown in Figure 825.3.

Figure 825.3 Cells in urine
Figure 825.3 Cells in urine (1) Isomorphic red blood cells, (2) Crenated red cells, (3) Swollen red cells, (4) Dysmorphic red cells, (5) White blood cells (pus cells), (6) Squamous epithelial cell, (7) Transitional epithelial cells, (8) Renal tubular epithelial cells, (9) Oval fat bodies, (10) Maltese cross pattern of oval fat bodies, and (11) spermatozoa

Red Blood Cells

Normally there are no or an occasional red blood cell in urine. In a fresh urine sample, red cells appear as small, smooth, yellowish, anucleate biconcave disks about 7 μ in diameter (called as isomorphic red cells). However, red cells may appear swollen (thin discs of greater diameter, 9-10 μ) in dilute or hypotonic urine, or may appear crenated (smaller diameter with spikey surface) in hypertonic urine. In glomerulonephritis, red cells are typically described as being dysmorphic (i.e. markedly variable in size and shape). They result from passage of red cells through the damaged glomeruli. Presence of > 80% of dysmorphic red cells is strongly suggestive of glomerular pathology.

The quantity of red cells can be reported as number of red cells per high power field.

Causes of hematuria have been listed earlier.

White Blood Cells (Pus Cells)

White blood cells are spherical, 10-15 μ in size, granular in appearance in which nuclei may be visible. Degenerated white cells are distorted, smaller, and have fewer granules. Clumps of numerous white cells are seen in infections. Presence of many white cells in urine is called as pyuria. In hypotonic urine white cells are swollen and the granules are highly refractile and show Brownian movement; such cells are called as glitter cells; large numbers are indicative of injury to urinary tract.

Normally 0-2 white cells may be seen per high power field. Pus cells greater than 10/HPF or presence of clumps is suggestive of urinary tract infection.

Increased numbers of white cells occur in fever, pyelonephritis, lower urinary tract infection, tubulointerstitial nephritis, and renal transplant rejection.

In urinary tract infection, following are usually seen in combination:

  • Clumps of pus cells or pus cells >10/HPF
  • Bacteria
  • Albuminuria
  • Positive nitrite test

Simultaneous presence of white cells and white cell casts indicates presence of renal infection (pyelonephritis).

Eosinophils (>1% of urinary leucocytes) are a characteristic feature of acute interstitial nephritis due to drug reaction (better appreciated with a Wright’s stain).

Renal Tubular Epithelial Cells

Presence of renal tubular epithelial cells is a significant finding. Increased numbers are found in conditions causing tubular damage like acute tubular necrosis, pyelonephritis, viral infection of kidney, allograft rejection, and salicylate or heavy metal poisoning.

These cells are small (about the same size or slightly larger than white blood cell), polyhedral, columnar, or oval, and have granular cytoplasm. A single, large, refractile, eccentric nucleus is often seen.

Renal tubular epithelial cells are difficult to distinguish from pus cells in unstained preparations.

Squamous Epithelial Cells

Squamous epithelial cells line the lower urethra and vagina. They are best seen under low power objective (×10). Presence of large numbers of squamous cells in urine indicates contamination of urine with vaginal fluid. These are large cells, rectangular in shape, flat with abundant cytoplasm and a small, central nucleus.

Transitional Epithelial Cells

Transitional cells line renal pelvis, ureters, urinary bladder, and upper urethra. These cells are large, and diamond- or pear-shaped (caudate cells). Large numbers or sheets of these cells in urine occur after catheterization and in transitional cell carcinoma.

Oval Fat Bodies

These are degenerated renal tubular epithelial cells filled with highly refractile lipid (cholesterol) droplets. Under polarized light, they show a characteristic “Maltese cross” pattern. They can be stained with a fat stain such as Sudan III or Oil Red O. They are seen in nephrotic syndrome in which there is lipiduria.

Spermatozoa

They may sometimes be seen in urine of men.

Telescoped urinary sediment: This refers to urinary sediment consisting of red blood cells, white blood cells, oval fat bodies, and all types of casts in roughly equal proportion. It occurs in lupus nephritis, malignant hypertension, rapidly proliferative glomerulonephritis, and diabetic glomerulosclerosis.

ORGANISMS

Organisms detectable in urine are shown in Figure 825.4.

Figure 825.4 Organisms in urine
Figure 825.4 Organisms in urine: (A) Bacteria, (B) Yeasts, (C) Trichomonas, and (D) Egg of Schistosoma haematobium

Bacteria

Bacteria in urine can be detected by microscopic examination, reagent strip tests for significant bacteriuria (nitrite test, leucocyte esterase test), and culture.

Significant bacteriuria exists when there are >105 bacterial colony forming units/ml of urine in a cleancatch midstream sample, >104 colony forming units/ml of urine in catheterized sample, and >103 colonyforming units/ml of urine in a suprapubic aspiration sample.

  1. Microscopic examination: In a wet preparation, presence of bacteria should be reported only when urine is fresh. Bacteria occur in combination with pus cells. Gram’s-stained smear of uncentrifuged urine showing 1 or more bacteria per oil-immersion field suggests presence of > 105 bacterial colony forming units/ml of urine. If many squamous cells are present, then urine is probably contaminated with vaginal flora. Also, presence of only bacteria without pus cells indicates contamination with vaginal or skin flora.
  2. Chemical or reagent strip tests for significant bacteriuria: These are given earlier.
  3. Culture: On culture, a colony count of >105/ml is strongly suggestive of urinary tract infection, even in asymptomatic females. Positive culture is followed by sensitivity test. Most infections are due to Gram-negative enteric bacteria, particularly Escherichia coli.

If three or more species of bacteria are identified on culture, it almost always indicates contamination by vaginal flora.

Negative culture in the presence of pyuria (‘sterile’ pyuria) occurs with prior antibiotic therapy, renal tuberculosis, prostatitis, renal calculi, catheterization, fever in children (irrespective of cause), female genital tract infection, and non-specific urethritis in males.

Yeast Cells (Candida)

These are round or oval structures of approximately the same size as red blood cells. In contrast to red cells, they show budding, are oval and more refractile, and are not soluble in 2% acetic acid.

Presence of Candida in urine may suggest immunocompromised state, vaginal candidiasis, or diabetes mellitus. Usually pyuria is present if there is infection by Candida. Candida may also be a contaminant in the sample and therefore urine sample must be examined in a fresh state.

Trichomonas vaginalis

These are motile organisms with pear shape, undulating membrane on one side, and four flagellae. They cause vaginitis in females and are thus contaminants in urine. They are easily detected in fresh urine due to their motility.

Eggs of Schistosoma haematobium

Infection by this organism is prevalent in Egypt.

Microfilariae

They may be seen in urine in chyluria due to rupture of a urogenital lymphatic vessel.

CASTS

Urinary casts are cylindrical, cigar-shaped microscopic structures that form in distal renal tubules and collecting ducts. They take the shape and diameter of the lumina (molds or ‘casts’) of the renal tubules. They have parallel sides and rounded ends. Their length and width may be variable. Casts are basically composed of a precipitate of a protein that is secreted by tubules (Tamm-Horsfall protein). Since casts form only in renal tubules their presence is indicative of disease of the renal parenchyma. Although there are several types of casts, all urine casts are basically hyaline; various types of casts are formed when different elements get deposited on the hyaline material (Figure 825.5). Casts are best seen under low power objective (×10) with condenser lowered down to reduce the illumination.

Figure 825.5 Genesis of casts in urine
 Figure 825.5 Genesis of casts in urine. All cellular casts degenerate to granular and waxy casts

Casts are the only elements in the urinary sediment that are specifically of renal origin.

Casts (Figure 825.6) are of two main types:

  1. Noncellular: Hyaline, granular, waxy, fatty
  2. Cellular: Red blood cell, white blood cell, renal tubular epithelial cell.

Hyaline and granular casts may appear in normal or diseased states. All other casts are found in kidney diseases.

Figure 825.6 Urinary casts
Figure 825.6 Urinary casts: (A) Hyaline cast, (B) Granular cast, (C) Waxy cast, (D) Fatty cast, (E) Red cell cast, (F) White cell cast, and (G) Epithelial cast

Non-cellular Casts

Hyaline casts: These are the most common type of casts in urine and are homogenous, colorless, transparent, and refractile. They are cylindrical with parallel sides and blunt, rounded ends and low refractive index. Presence of occasional hyaline cast is considered as normal. Their presence in increased numbers (“cylinduria”) is abnormal. They are composed primarily of Tamm-Horsfall protein. They occur transiently after strenuous muscle exercise in healthy persons and during fever. Increased numbers are found in conditions causing glomerular proteinuria.

Granular casts: Presence of degenerated cellular debris in a cast makes it granular in appearance. These are cylindrical structures with coarse or fine granules (which represent degenerated renal tubular epithelial cells) embedded in Tamm-Horsfall protein matrix. They are seen after strenuous muscle exercise and in fever, acute glomerulonephritis, and pyelonephritis.

Waxy cast: These are the most easily recognized of all casts. They form when hyaline casts remain in renal tubules for long time (prolonged stasis). They have homogenous, smooth glassy appearance, cracked or serrated margins and irregular broken-off ends. The ends are straight and sharp and not rounded as in other casts. They are light yellow in color. They are most commonly seen in end-stage renal failure.

Fatty casts: These are cylindrical structures filled with highly refractile fat globules (triglycerides and cholesterol esters) in Tamm-Horsfall protein matrix. They are seen in nephrotic syndrome.

Broad casts: Broad casts form in dilated distal tubules and are seen in chronic renal failure and severe renal tubular obstruction. Both waxy and broad casts are associated with poor prognosis.

Cellular Casts

To be called as cellular, casts should contain at least three cells in the matrix. Cellular casts are named according to the type of cells entrapped in the matrix.

Red cell casts: These are cylindrical structures with red cells in Tamm-Horsfall protein matrix. They may appear brown in color due to hemoglobin pigmentation. These have greater diagnostic importance than any other cast. If present, they help to differentiate hematuria due to glomerular disease from hematuria due to other causes. RBC casts usually denote glomerular pathology e.g. acute glomerulonephritis.

White cell casts: These are cylindrical structures with white blood cells embedded in Tamm-Horsfall protein matrix. Leucocytes usually enter into tubules from the interstitium and therefore presence of leucocyte casts indicates tubulointerstitial disease like pyelonephritis.

Renal tubular epithelial cell casts: These are composed of renal tubular epithelial cells that have been sloughed off. They are seen in acute tubular necrosis, viral renal disease, heavy metal poisoning, and acute allograft rejection. Even an occasional renal tubular cast is a significant finding.

CRYSTALS

Crystals are refractile structures with a definite geometric shape due to orderly 3-dimensional arrangement of its atoms and molecules. Amorphous material (or deposit) has no definite shape and is commonly seen in the form of granular aggregates or clumps.

Crystals in urine (Figure 825.7) can be divided into two main types: (1) Normal (seen in normal urinary sediment), and (2) Abnormal (seen in diseased states).

Figure 825.7 Crystals in urine
Figure 825.7 Crystals in urine. (A) Normal crystals: (1) Calcium oxalate, (2) Triple phosphates, (3) Uric acid, (4) Amorphous phosphates, (5) Amorphous urates, (6) Ammonium urate. (B) Abnormal crystals: (1) Cysteine, (2) Cholesterol, (3) Bilirubin, (4) Tyrosine, (5) Sulfonamide, and (6) Leucine

However, crystals found in normal urine can also be seen in some diseases in increased numbers.

Most crystals have no clinical importance (particularly phosphates, urates, and oxalates). Crystals can be identified in urine by their morphology. However, before reporting presence of any abnormal crystals, it is necessary to confirm them by chemical tests.

Normal Crystals

Crystals present in acid urine:

  1. Uric acid crystals: These are variable in shape (diamond, rosette, plates), and yellow or red-brown in color (due to urinary pigment). They are soluble in alkali, and insoluble in acid. Increased numbers are found in gout and leukemia. Flat hexagonal uric acid crystals may be mistaken for cysteine crystals that also form in acid urine.
  2. Calcium oxalate crystals: These are colorless, refractile, and envelope-shaped. Sometimes dumbbell-shaped or peanut-like forms are seen. They are soluble in dilute hydrochloric acid. Ingestion of certain foods like tomatoes, spinach, cabbage, asparagus, and rhubarb causes increase in their numbers. Their increased number in fresh urine (oxaluria) may also suggest oxalate stones. A large number are seen in ethylene glycol poisoning.
  3. Amorphous urates: These are urate salts of potassium, magnesium, or calcium in acid urine. They are usually yellow, fine granules in compact masses. They are soluble in alkali or saline at 60°C.

Crystals present in alkaline urine:

  1. Calcium carbonate crystals: These are small, colorless, and grouped in pairs. They are soluble in acetic acid and give off bubbles of gas when they dissolve.
  2. Phosphates: Phosphates may occur as crystals (triple phosphates, calcium hydrogen phosphate), or as amorphous deposits.
    Phosphate crystals
    Triple phosphates (ammonium magnesium phosphate): They are colorless, shiny, 3-6 sided prisms with oblique surfaces at the ends (“coffinlids”), or may have a feathery fern-like appearance.
    Calcium hydrogen phosphate (stellar phosphate): These are colorless, and of variable shape (starshaped, plates or prisms).
    Amorphous phosphates: These occur as colorless small granules, often dispersed.
    All phosphates are soluble in dilute acetic acid.
  3. Ammonium urate crystals: These occur as cactus-like (covered with spines) and called as ‘thornapple’ crystals. They are yellow-brown and soluble in acetic acid at 60°C.

Abnormal Crystals

They are rare, but result from a pathological process.

These occur in acid pH, often in large amounts. Abnormal crystals should not be reported on microscopy alone; additional chemical tests are done for confirmation.

  1. Cysteine crystals: These are colorless, clear, hexagonal (having 6 sides), very refractile plates in acid urine. They often occur in layers. They are soluble in 30% hydrochloric acid. They are seen in cysteinuria, an inborn error of metabolism. Cysteine crystals are often associated with formation of cysteine stones.
  2. Cholesterol crystals: These are colorless, refractile, flat rectangular plates with notched (missing) corners, and appear stacked in a stair-step arrangement. They are soluble in ether, chloroform, or alcohol. They are seen in lipiduria e.g. nephrotic syndrome and hypercholesterolemia. They can be positively identified by polarizing microscope.
  3. Bilirubin crystals: These are small (5 μ), brown crystals of variable shape (square, bead-like, or fine needles). Their presence can be confirmed by doing reagent strip or chemical test for bilirubin. These crystals are soluble in strong acid or alkali. They are seen in severe obstructive liver disease.
  4. Leucine crystals: These are refractile, yellow or brown, spheres with radial or concentric striations. They are soluble in alkali. They are usually found in urine along with tyrosine in severe liver disease (cirrhosis).
  5. Tyrosine crystals: They appear as clusters of fine, delicate, colorless or yellow needles and are seen in liver disease and tyrosinemia (an inborn error of metabolism). They dissolve in alkali.
  6. Sulfonamide crystals: They are variably shaped crystals, but usually appear as sheaves of needles. They occur following sulfonamide therapy. They are soluble in acetone.

Bile salts are salts of four different types of bile acids: cholic, deoxycholic, chenodeoxycholic, and lithocholic. These bile acids combine with glycine or taurine to form complex salts or acids. Bile salts enter the small intestine through the bile and act as detergents to emulsify fat and reduce the surface tension on fat droplets so that enzymes (lipases) can breakdown the fat. In the terminal ileum, bile salts are absorbed and enter in the blood stream from where they are taken up by the liver and re-excreted in bile (enterohepatic circulation).

Bile salts along with bilirubin can be detected in urine in cases of obstructive jaundice. In obstructive jaundice, bile salts and conjugated bilirubin regurgitate into blood from biliary canaliculi (due to increased intrabiliary pressure) and are excreted in urine. The test used for their detection is Hay’s surface tension test. The property of bile salts to lower the surface tension is utilized in this test.

Take some fresh urine in a conical glass tube. Urine should be at the room temperature. Sprinkle on the surface particles of sulphur. If bile salts are present, sulphur particles sink to the bottom because of lowering of surface tension by bile salts. If sulphur particles remain on the surface of urine, bile salts are absent.

Thymol (used as a preservative) gives false positive test.

Bilirubin is converted to non-reactive biliverdin on exposure to light (daylight or fluorescent light) and on standing at room temperature. Biliverdin cannot be detected by tests that detect bilirubin. Therefore fresh sample that is kept protected from light is required. Findings associated with bilirubinuria are listed below.

Methods for detection of bilirubin in urine are foam test, Gmelin’s test, Lugol iodine test, Fouchet’s test, Ictotest tablet test, and reagent strip test.

  1. Foam test: About 5 ml of urine in a test tube is shaken and observed for development of yellowish foam. Similar result is also obtained with proteins and highly concentrated urine. In normal urine, foam is white.
  2. Gmelin’s test: Take 3 ml of concentrated nitric acid in a test tube and slowly place equal quantity of urine over it. The tube is shaken gently; play of colors (yellow, red, violet, blue, and green) indicates positive test (Figure 823.1).
  3. Lugol iodine test: Take 4 ml of Lugol iodine solution (Iodine 1 gm, potassium iodide 2 gm, and distilled water to make 100 ml) in a test tube and add 4 drops of urine. Mix by shaking. Development of green color indicates positive test.
  4. Fouchet’s test: This is a simple and sensitive test.
    i. Take 5 ml of fresh urine in a test tube, add 2.5 ml of 10% of barium chloride, and mix well. A precipitate of sulphates appears to which bilirubin is bound (barium sulphate-bilirubin complex).
    ii. Filter to obtain the precipitate on a filter paper.
    iii. To the precipitate on the filter paper, add 1 drop of Fouchet’s reagent. (Fouchet’s reagent consists of 25 grams of trichloroacetic acid, 10 ml of 10% ferric chloride, and distilled water 100 ml).
    iv. Immediate development of blue-green color around the drop indicates presence of bilirubin (Figure 823.2).
  5. Reagent strips or tablets impregnated with diazo reagent: These tests are based on reaction of bilirubin with diazo reagent; color change is proportional to the concentration of bilirubin. Tablets (Ictotest) detect 0.05-0.1 mg of bilirubin/dl of urine; reagent strip tests are less sensitive (0.5 mg/dl).
Figure 823.1 Positive Gmelins test for bilirubin showing play of colors
Figure 823.1 Positive Gmelin’s test for bilirubin showing play of colors

Figure 823.2 Positive Fouchets test for bilirubin in urine
Figure 823.2 Positive Fouchet’s test for bilirubin in urine

The proportion of ketone bodies in urine in ketosis is variable: β-hydroxybutyric acid 78%, acetoacetic acid 20%, and acetone 2%.

No method for detection of ketonuria reacts with all the three ketone bodies. Rothera’s nitroprusside method and methods based on it detect acetoacetic acid and acetone (the test is 10-20 times more sensitive to acetoacetic acid than acetone). Ferric chloride test detects acetoacetic acid only. β-hydroxybutyric acid is not detected by any of the screening tests.

Methods for detection of ketone bodies in urine are Rothera’s test, Acetest tablet method, ferric chloride test, and reagent strip test.

1. ROTHERA’S’ TEST (Classic Nitroprusside Reaction)

Acetoacetic acid or acetone reacts with nitroprusside in alkaline solution to form a purple-colored complex (Figure 822.1). Rothera’s test is sensitive to 1-5 mg/dl of acetoacetate and to 10-25 mg/dl of acetone.

Figure 822.1 Principles of Rothera Test in Urine
Figure 822.1 Principles of Rothera’s test and reagent strip test for ketone bodies in urine. Ketones are detected as acetoacetic acid and acetone but not β-hydroxybutyric acid

Method

  1. Take 5 ml of urine in a test tube and saturate it with ammonium sulphate.
  2. Add a small crystal of sodium nitroprusside. Mix well.
  3. Slowly run along the side of the test tube liquor ammonia to form a layer.
  4. Immediate formation of a purple permanganate colored ring at the junction of the two fluids indicates a positive test (Figure 822.2).

False-positive test can occur in the presence of L-dopa in urine and in phenylketonuria.

Figure 822.2 Rotheras tube test and reagent strip test for ketone bodies in urine
Figure 822.2 Rothera’s tube test and reagent strip test for ketone bodies in urine

2. ACETEST TABLET TEST

This is Rothera’s test in the form of a tablet. The Acetest tablet consists of sodium nitroprusside, glycine, and an alkaline buffer. A purplelavender discoloration of the tablet indicates the presence of acetoacetate or acetone (≥ 5 mg/dl). A rough estimate of the amount of ketone bodies can be obtained by comparison with the color chart provided by the manufacturer.

The test is more sensitive than reagent strip test for ketones.

3. FERRIC CHLORIDE TEST (Gerhardt’s)

Addition of 10% ferric chloride solution to urine causes solution to become reddish or purplish if acetoacetic acid is present. The test is not specific since certain drugs (salicylate and L-dopa) give similar reaction. Sensitivity of the test is 25-50 mg/dl.

4. REAGENT STRIP TEST

Reagent strips tests are modifications of nitroprusside test (Figures 822.1 and 822.2). Their sensitivity is 5-10 mg/dl of acetoacetate. If exposed to moisture, reagent strips often give false-negative result. Ketone pad on the strip test is especially vulnerable to improper storage and easily gets damaged. Also read: URINE STRIP TEST — UNDERSTANDING ITS LIMITATIONS.

1. HEAT AND ACETIC ACID TEST (BOILING TEST)
 
This test is based on the principle that proteins get precipitated when boiled in an acidic solution.
 
Method
 
Urine should be clear; if not, filter or use supernatant from a centrifuged sample.
 
Urine should be just acidic (check with litmus paper); if not, add 10% acetic acid drop by drop until blue litmus paper turns red.
 
A test tube is filled 2/3rds with urine. The tube is inclined at an angle and the upper portion is boiled over the flame. (Only the upper portion is heated so that convection currents generated by heat do not disturb the precipitate and the upper portion can be compared with the lower clear portion). Compare the heated part with the lower part. Cloudiness or turbidity indicates presence of either phosphates or proteins (Figure 821.1). A few drops of 10% acetic acid are added and the upper portion is boiled again. Turbidity due to phosphates disappears while that due to proteins does not.
 
Figure 821.1 Principle of heat test for proteins
Figure 821.1 Principle of heat test for proteins
 
False-positive test occurs with tolbutamide and large doses of penicillins.
 
2. REAGENT STRIP TEST
 
The reagent area of the strip is coated with an indicator and buffered to an acid pH which changes color in the presence of proteins (Figures 821.2 and 821.3). The principle is known as “protein error of indicators”.
 
Figure 821.2 Principle of reagent strip test for proteins
Figure 821.2 Principle of reagent strip test for proteins. The principle is called as ‘protein error of indicators’ meaning that one color appears if protein is present and another color if protein is absent. Sensitivity is 5-10 mg/dl. The test does not detect Bence Jones proteins, hemoglobin, and myoglobin
 
The reagent area is impregnated with bromophenol blue indicator buffered to pH 3.0 with citrate. When the dye gets adsorbed to protein, there is change in ionization (and hence pH) of the indicator that leads to change in color of the indicator. The intensity of the color produced is proportional to the concentration of protein. The test is semi-quantitative.
 
Figure 821.3 Grading of proteinuria with reagent strip test
Figure 821.3 Grading of proteinuria with reagent strip test (above) and sulphosalicylic acid test (below)
 
Reagent strip test is mainly reactive to albumin. It is false-negative in the presence of Bence Jones proteins, myoglobin, and hemoglobin. Overload (Bence Jones) proteinuria and tubular proteinuria may be missed entirely if only reagent strip method is used. This test should be followed by sulphosalicylic acid test, which is a confirmatory test. Highly alkaline urine, gross hematuria, and contamination with vaginal secretions can give false-positive reactions. Also read: URINE STRIP TEST — UNDERSTANDING ITS LIMITATIONS.
 
3. SULPHOSALICYLIC ACID TEST
 
Addition of sulphosalicylic acid to the urine causes formation of a white precipitate if proteins are present (Proteins are denatured by organic acids and precipitate out of solution).
 
Take 2 ml of clear urine in a test tube. If reaction of urine is neutral or alkaline, a drop of glacial acetic acid is added. Add 2-3 drops of sulphosalicylic acid (3 to 5%), and examine for turbidity against a dark background (Figure 821.3).
 
This test is more sensitive and reliable than boiling test.
 
False-positive test may occur due to gross hematuria, highly concentrated urine, radiographic contrast media, excess uric acid, tolbutamide, sulphonamides, salicylates, and penicillins.
 
False-negative test can occur with very dilute urine.
 
The test can detect albumin, hemoglobin, myoglobin, and Bence Jones proteins.
 
Comparison of reagent strip test and sulphosalicylic acid test is shown in Table 821.1.
 
Table 821.1 Comparison of two tests for proteinuria
Parameter Reagent strip test Sulphosalicylic acid test
1. Principle Colorimetric Acid precipitation
2. Proteins detected Albumin All (albumin, Bence Jones proteins, hemoglobin, myoglobin)
3. Sensitivity 5-10 mg/dl 20 mg/dl
4. Indicator Color change Turbidity
5. Type of test Screening Confirmatory
 
QUANTITATIVE ESTIMATION OF PROTEINS
 
Indications for quantitative estimation of proteins in urine are:
 
  • Diagnosis of nephrotic syndrome
  • Detection of microalbuminuria or early diabetic nephropathy
  • To follow response to therapy in renal disease
 
Proteinuria >1500 mg/ 24 hours indicates glomerular disease; proteinuria >3500 mg/24 hours is called as nephrotic range proteinuria; in tubular, hemodynamic and post renal diseases, proteinuria is usually < 1500 mg/24 hours.
 
Grading of albuminuria is shown in Table 821.2. There are two methods for quantitation of proteins:
 
  1. Estimation of proteins in a 24-hour urine sample, and
  2. Estimation of protein/creatinine ratio in a random urine sample.
 
Table 821.2 Grading of albuminuria
Condition mg/24 hr mg/L mg/g creatinine μg/min μg/mg creatinine g/mol creatinine
Normal < 30 < 20 < 20 < 20 < 30 < 2.5
Microalbuminuria 30-300 20-200 20-300 20-200 30-300 2.5-25
Overt albuminuria > 300 > 200 > 300 > 200 > 300 > 25
 
1. Quantitative estimation of proteins in a 24-hour urine sample: Collection of a 24-hour sample is given earlier. Adequacy of sample is confirmed by calculating expected 24-hour urine creatinine excretion. Daily urinary creatinine excretion depends on muscle mass and remains relatively constant in an individual patient. In adult males creatinine excretion is 14-26 mg/kg/24 hours, while in women it is 11-20 mg/kg/24 hours. Various methods are available for quantitative estimation of proteins: Esbach’s albuminometer method, turbidimetric methods, biuret reaction, and immunologic methods.
 
2. Estimation of protein/creatinine ratio in a random urine sample: Because of the problem of incomplete collection of a 24-hour urine sample, many laboratories measure protein/creatinine ratio in a random urine sample. Normal protein/creatinine ratio is < 0.2. In low-grade proteinuria it is 0.2-1.0; in moderate, it is 1.0-3.5; and in nephrotic- range proteinuria it is > 3.5.
 
MICROALBUMINURIA
 
This is defined as urinary excretion of 30 to 300 mg/24 hours (or 2-20 mg/dl) of albumin in urine.
 
Significance of Microalbuminuria
 
  1. Microalbuminuria is considered as the earliest sign of renal damage in diabetes mellitus (diabetic nephropathy). It indicates increase in capillary permeability to albumin and denotes microvascular disease. Microalbuminuria precedes the development of diabetic nephropathy by a few years. If blood glucose level and hypertension are tightly controlled at this stage by aggressive treatment then progression to irreversible renal disease and subsequent renal failure can be delayed or prevented.
  2. Microalbuminuria is an independent risk factor for cardiovascular disease in diabetes mellitus.
 
Detection of Microalbuminuria: Microalbuminuria cannot be detected by routine tests for proteinuria. Methods for detection include:
 
  • Measurement of albumin-creatinine ratio in a random urine sample
  • Measurement of albumin in an early morning or random urine sample
  • Measurement of albumin in a 24 hr sample
 
Test strips that screen for microalbuminuria are available commercially. Exact quantitation can be done by immunologic assays like radioimmunoassay or enzyme linked immunosorbent assay.
 
BENCE JONES PROTEINURIA
 
Bence Jones proteins are monoclonal immunoglobulin light chains (either κ or λ) that are synthesized by neoplastic plasma cells. Excess production of these light chains occurs in plasma cell dyscrasias like multiple myeloma and primary amyloidosis. Because of their low molecular weight and high concentration they are excreted in urine (overflow proteinuria).
 
Bence Jones proteins have a characteristic thermal behaviour. When heated, Bence Jones proteins precipitate at temperatures between 40°C to 60°C (other proteins precipitate between 60-70°C), and precipitate disappears on further heating at 85-100°C (while precipitate of other proteins does not). When cooled (60-85°C), there is reappearance of precipitate of Bence Jones proteins. This test, however, is not specific for Bence Jones proteins and both false-positive and -negative results can occur. This test has been replaced by protein electrophoresis of concentrated urine sample (Figure 821.4).
 
Figure 821.4 Urine protein electrophoresis showing heavy Bence Jones proteinuria
Figure 821.4 Urine protein electrophoresis showing heavy Bence Jones proteinuria (red arrow) along with loss of albumin and other low molecular weight proteins in urine
 
Further evaluation of persistent overt proteinuria is shown in Figure 821.5.
 
Figure 821.5 Evaluation of proteinuria
Figure 821.5 Evaluation of proteinuria.
Note: Quantitation of proteins and creatinine clearance are done in all patients with persistent proteinuria

1. COPPER REDUCTION METHODS

A. Benedict’s qualitative test:

When urine is boiled in Benedict’s qualitative solution, blue alkaline copper sulphate is reduced to red-brown cuprous oxide if a reducing agent is present (Figure 820.1). The extent of reduction depends on the concentration of the reducing substance. This test, however, is not specific for glucose.

Figure 820.1 Principle of Benedict’s qualitative test for sugar in urine
Figure 820.1 Principle of Benedict’s qualitative test for sugar in urine. Sensitivity is 200 mg of glucose/dl

Other carbohydrates (like lactose, fructose, galactose, pentoses), certain metabolites (glucuronic acid, homogentisic acid, uric acid, creatinine), and drugs (ascorbic acid, salicylates, cephalosporins, penicillins, streptomycin, isoniazid, para-aminosalicylic acid, nalidixic acid, etc.) also reduce alkaline copper sulphate solution.

Method

  1. Take 5 ml of Benedict’s qualitative reagent in a test tube (composition of Benedict’s qualitative reagent: copper sulphate 17.3 gram, sodium carbonate 100 gram, sodium citrate 173 gram, distilled water 1000 ml).
  2. Add 0.5 ml (or 8 drops) of urine. Mix well.
  3. Boil over a flame for 2 minutes.
  4. Allow to cool at room temperature.
  5. Note the color change, if any.

Sensitivity of the test is about 200 mg reducing substance per dl of urine. Since Benedict’s test gives positive reaction with carbohydrates other than glucose, it is also used as a screening test (for detection of galactose, lactose, fructose, maltose, and pentoses in urine) for inborn errors of carbohydrate metabolism in infants and children.

For testing urine only for glucose, reagent strips are preferred (see below).

The result is reported in grades as follows (Figure 820.2):

  • Nil: no change from blue color
  • Trace: Green without precipitate
  • 1+ (approx. 0.5 grams/dl): Green with precipitate
  • 2+ (approx. 1.0 grams/dl): Brown precipitate
  • 3+ (approx. 1.5 grams/dl: Yellow-orange precipitate
  • 4+ (> 2.0 grams/dl): Brick- red precipitate.
Figure 820.2 Grading of Benedicts test
Figure 820.2 Grading of Benedict’s test (above) and reagent strip test (below) for glucose

B. Clinitest tablet method (Copper reduction tablet test):

This is a modified form of Benedict’s test in which the reagents are present in a tablet form (copper sulphate, citric acid, sodium carbonate, and anhydrous sodium hydroxide). Sensitivity is 200 mgs/dl of glucose.

2. REAGENT STRIP METHOD

This test is specific for glucose and is therefore preferred over Benedict’s and Clinitest methods. It is based on glucose oxidase-peroxidase reaction. Reagent area of the strips is impregnated with two enzymes (glucose oxidase and peroxidase) and a chromogen. Glucose is oxidized by glucose oxidase with the resultant formation of hydrogen peroxide and gluconic acid. Oxidation of chromogen occurs in the presence of hydrogen peroxide and the enzyme peroxidase with resultant color change (Figure 820.3). Nature of chromogen and buffer system differ in different strips. Also read: URINE STRIP TEST — UNDERSTANDING ITS LIMITATIONS.

The strip is dipped into the urine sample and color is observed after a specified time and compared with the color chart provided (Figure 820.2).

Figure 820.3 Principle of reagent strip test for glucose in urine
Figure 820.3 Principle of reagent strip test for glucose in urine. Each mole of glucose produces one mole of peroxide, and each mole of peroxide reduces one mole of oxygen. Sensitivity is 100 mg glucose/100 ml

This test is more sensitive than Benedict’s qualitative test and specific only for glucose. Other reducing agents give negative reaction.

Sensitivity of the test is about 100 mg glucose/dl of urine.

False-positive test occurs in the presence of oxidizing agent (bleach or hypochlorite used to clean urine containers), which oxidizes the chromogen directly.

False-negative test occurs in the presence of large amounts of ketones, salicylates, ascorbic acid, and severe Escherichia coli infection (catalase produced by organisms in urine inactivates hydrogen peroxide).

The parameters to be examined on physical examination of urine are listed below.

  • Volume
  • Color
  • Appearance
  • Odor
  • Specific Gravity
  • pH

VOLUME

Volume of only the 24-hr specimen of urine needs to be measured and reported. The average 24-hr urinary output in adults is 600-2000 ml. The volume varies according to fluid intake, diet, and climate. Abnormalities of urinary volume are as follows:

  • Polyuria means urinary volume > 2000 ml/24 hours. This is seen in diabetes mellitus (osmotic diuresis), diabetes insipidus (failure of secretion of antidiuretic hormone), chronic renal failure (loss of concentrating ability of kidneys) or diuretic therapy.
  • Oliguria means urinary volume < 400 ml/24 hours. Causes include febrile states, acute glomerulonephritis (decreased glomerular filtration), congestive cardiac failure or dehydration (decreased renal blood flow).
  • Anuria means urinary output < 100 ml/24 hours or complete cessation of urine output. It occurs in acute tubular necrosis (e.g. in shock, hemolytic transfusion reaction), acute glomerulonephritis, and complete urinary tract obstruction.

COLOR

Normal urine color in a fresh state is pale yellow or amber and is due to the presence of various pigments collectively called urochrome. Depending on the state of hydration urine may normally be colorless (over hydration) or dark yellow (dehydration). Some of the abnormal colors with associated conditions are listed in Table 819.1.

Table 819.1 Different colors of urine
Colors Conditions
Colorless Dilute urine (diabetes mellitus, diabetes insipidus, overhydration)
Red Hematuria, Hemoglobinuria, Porphyria, Myoglobinuria
Dark brown or black Alkaptonuria, Melanoma
Brown Hemoglobinuria
Yellow Concentrated urine
Yellow-green or green Biliverdin
Deep yellow with yellow foam Bilirubin
Orange or orange-brown Urobilinogen/Porphobilinogen
Milky-white Chyluria
Red or orange fluorescence with UV light Porphyria
Note: Many drugs cause changes in urine color; drug history should be obtained if there is abnormal coloration of urine

APPEARANCE

Normal, freshly voided urine is clear in appearance. Causes of cloudy or turbid urine are listed in Table 819.2. Foamy urine occurs in the presence of excess proteins or bilirubin.

Table 819.2 Causes of cloudy or turbid urine
Cause Appearance Diagnosis
1. Amorphous phosphates White and cloudy on standing in alkaline urine Disappear on addition of a drop of dilute acetic acid
2. Amorphous urates Pink and cloudy in acid urine Dissolve on warming
3. Pus cells Varying grades of turbidity Microscopy
4. Bacteria Uniformly cloudy; do not settle at the bottom following centrifugation Microscopy, Nitrite test

ODOR

Freshly voided urine has a typical aromatic odor due to volatile organic acids. After standing, urine develops ammoniacal odor (formation of ammonia occurs when urea is decomposed by bacteria). Some abnormal odors with associated conditions are:

  • Fruity: Ketoacidosis, starvation
  • Mousy or musty: Phenylketonuria
  • Fishy: Urinary tract infection with Proteus, tyrosinaemia.
  • Ammoniacal: Urinary tract infection with Escherichia coli, old standing urine.
  • Foul: Urinary tract infection
  • Sulfurous: Cystinuria.

SPECIFIC GRAVITY (SG)

This is also called as relative mass density. It depends on amount of solutes in solution. It is basically a comparison of density of urine against the density of distilled water at a particular temperature. Specific gravity of distilled water is 1.000. Normal SG of urine is 1.003 to 1.030 and depends on the state of hydration. SG of normal urine is mainly related to urea and sodium. SG increases as solute concentration increases and decreases when temperature rises (since volume expands with rise in temperature).

SG of urine is a measure of concentrating ability of kidneys and is determined to get information about this tubular function. SG, however, is affected by proteinuria and glycosuria.

Causes of increase in SG of urine are diabetes mellitus (glycosuria), nephrotic syndrome (proteinuria), fever, and dehydration.

Causes of decrease in SG of urine are diabetes insipidus (SG consistently between 1.002-1.003), chronic renal failure (low and fixed SG at 1.010 due to loss of concentrating ability of tubules) and compulsive water drinking.

Methods for measuring SG are urinometer method, refractometer method, and reagent strip method.

1. Urinometer method:

This method is based on the principle of buoyancy (i.e. the ability of a fluid to exert an upward thrust on a body placed in it). Urinometer (a hydrometer) is placed in a container filled with urine (Figure 819.1A). When solute concentration is high, upthrust of solution increases and urinometer is pushed up (high SG). If solute concentration is low, urinometer sinks further into the urine (low SG).

Figure 819.1 A. Urinometer method and B. Reagent strip method for measuring specific gravity of urine
Figure 819.1 (A) Urinometer method and (B) Reagent strip method for measuring specific gravity of urine

Accuracy of a urinometer needs to be checked with distilled water. In distilled water, urinometer should show SG of 1.000 at the temperature of calibration. If not, then the difference needs to be adjusted in test readings taken subsequently.

The method is as follows:

  1. Fill a measuring cylinder with 50 ml of urine.
  2. Lower urinometer gently into the urine and let it float freely.
  3. Let urinometer settle; it should not touch the sides or bottom of the cylinder.
  4. Take the reading of SG on the scale (lowest point of meniscus) at the surface of the urine.
  5. Take out the urinometer and immediately note the temperature of urine with a thermometer.

Correction for temperature: Density of urine increases at low temperature and decreases at higher temperature. This causes false reading of SG. Therefore, SG is corrected for difference between urine temperature and calibration temperature. Check the temperature of calibration of the urinometer To get the corrected SG, add 0.001 to the reading for every 3°C that the urine temperature is above the temperature of calibration. Similarly subtract 0.001 from the reading for every 3°C below the calibration temperature.

Correction for dilution: If quantity of urine is not sufficient for measurement of SG, urine can be appropriately diluted and the last two figures of SG are multiplied by the dilution factor.

Correction for abnormal solute concentration: High SG in the presence of glycosuria or proteinuria will not reflect true kidney function (concentrating ability). Therefore it is necessary to nullify the effect of glucose or proteins. For this, 0.003 is subtracted from temperature-corrected SG for each 1 gm of protein/dl urine and 0.004 for every 1 gm of glucose/dl urine.

2. Refractometer method:

SG can be precisely determined by a refractometer, which measures the refractive index of the total soluble solids. Higher the concentration of total dissolved solids, higher the refractive index. Extent of refraction of a beam of light passed through urine is a measure of solute concentration, and thus of SG. The method is simple and requires only 1-2 drops of urine. Result is read from a scale or from digital display.

3. Reagent strip method:

Reagent strip (Figure 819.1B) measures the concentration of ions in urine, which correlates with SG. Depending on the ionic strength of urine, a polyelectrolyte will ionize in proportion. This causes a change in color of pH indicator (bromothymol blue). Also read: URINE STRIP TEST — UNDERSTANDING ITS LIMITATIONS.

REACTION AND pH

The pH is the scale for measuring acidity or alkalinity (acid if pH is < 7.0; alkaline if pH is > 7.0; neutral if pH is 7.0). On standing, urine becomes alkaline because of loss of carbon dioxide and production of ammonia from urea. Therefore, for correct estimation of pH, fresh urine should be examined.

There are various methods for determination of reaction of urine: litmus paper, pH indicator paper, pH meter, and reagent strip tests.

  1. Litmus paper test: A small strip of litmus paper is dipped in urine and any color change is noted. If blue litmus paper turns red, it indicates acid urine. If red paper turns blue, it indicates alkaline urine (Figure 819.2A).
  2. pH indicator paper: Reagent area (which is impregnated with bromothymol blue and methyl red) of indicator paper strip is dipped in urine sample and the color change is compared with the color guide provided. Approximate pH is obtained.
  3. pH meter: An electrode of pH meter is dipped in urine sample and pH is read off directly from the digital display. It is used if exact pH is required.
  4. Reagent strip test: The test area (Figure 819.2B) contains polyionic polymer bound to H+; on reaction with cations in urine, H+ is released causing change in color of the pH-sensitive dye. Also read: URINE STRIP TEST — UNDERSTANDING ITS LIMITATIONS.
Figure 819.2 A. Testing pH of urine with litmus paper and B. with reagent strip test
Figure 819.2 Testing pH of urine with litmus paper (A) and with reagent strip test (B)

Normal pH range is 4.6 to 8.0 (average 6.0 or slightly acidic). Urine pH depends on diet, acid base balance, water balance, and renal tubular function.

Acidic urine is found in ketosis (diabetes mellitus, starvation, fever), urinary tract infection by Escherichia coli, and high protein diet. Alkaline urine may result from urinary tract infection by bacteria that split urea to ammonia (Proteus or Pseudomonas), severe vomiting, vegetarian diet, old ammoniacal urine sample and chronic renal failure.

Determining pH of urine helps in identifying various crystals in urine. Altering pH of urine may be useful in treatment of renal calculi (i.e. some stones form only in acid urine e.g. uric acid calculi; in such cases urine is kept alkaline); urinary tract infection (urine should be kept acid); and treatment with certain drugs (e.g. streptomycin is effective in urinary tract infection if urine is kept alkaline). In unexplained metabolic acidosis, measurement of urine pH is helpful in diagnosing renal tubular acidosis; in renal tubular acidosis, urine pH is consistently alkaline despite metabolic acidosis.

Fresh urine sample should be used because on standing urobilinogen is converted to urobilin, which cannot be detected by routine tests. A timed (2-hour postprandial) sample can also be used for testing urobilinogen.

Methods for detection of increased amounts of urobilinogen in urine are Ehrlich’s aldehyde test and reagent strip test.

1. EHRLICH’S ALDEHYDE TEST

Ehrlich’s reagent (pdimethylaminobenzaldehyde) reacts with urobilinogen in urine to produce a pink color. Intensity of color developed depends on the amount of urobilinogen present. Presence of bilirubin interferes with the reaction, and therefore if present, should be removed. For this, equal volumes of urine and 10% barium chloride are mixed and then filtered. Test for urobilinogen is carried out on the filtrate. However, similar reaction is produced by porphobilinogen (a substance excreted in urine in patients of porphyria).

Fig. 818.1 Ehrlichs aldehyde test for urobilinogen
Figure 818.1 Ehrlich’s aldehyde test for urobilinogen

Method

Take 5 ml of fresh urine in a test tube. Add 0.5 ml of Ehrlich’s aldehyde reagent (which consists of hydrochloric acid 20 ml, distilled water 80 ml, and paradimethylaminobenzaldehyde 2 gm). Allow to stand at room temperature for 5 minutes. Development of pink color indicates normal amount of urobilinogen. Darkred color means increased amount of urobilinogen (Figure 818.1).

Since both urobilinogen and porphobilinogen produce similar reaction, further testing is required to distinguish between the two. For this, Watson-Schwartz test is used. Add 1-2 ml of chloroform, shake for 2 minutes and allow to stand. Pink color in the chloroform layer indicates presence of urobilinogen, while pink coloration of aqueous portion indicates presence of porphobilinogen. Pink layer is then decanted and shaken with butanol. A pink color in the aqueous layer indicates porphobilinogen (Figure 818.2).

Figure 818.2 Interpretation of Watson Schwartz test
Figure 818.2 Interpretation of Watson-Schwartz test

False-negative reaction can occur in the presence of (i) urinary tract infection (nitrites oxidize urobilinogen to urobilin), and (ii) antibiotic therapy (gut bacteria which produce urobilinogen are destroyed).

2. REAGENT STRIP METHOD

This method is specific for urobilinogen. Test area is impregnated with either p-dimethylaminobenzaldehyde or 4-methoxybenzene diazonium tetrafluoroborate. Also read: URINE STRIP TEST — UNDERSTANDING ITS LIMITATIONS.

Porphyrias (from Greek porphura meaning purple pigment; the name is probably derived from purple discoloration of some body fluids during the attack) are a heterogeneous group of rare disorders resulting from disturbance in the heme biosynthetic pathway leading to the abnormal accumulations of red and purple pigments called as porphyrins in the body. Heme, a component of hemoglobin, is synthesized through various steps as shown in Figure 817.1. Each of the steps is catalyzed by a separate enzyme; if any of these steps fails (due to hereditary or acquired cause), precursors of heme (porphyrin intermediates) accumulate in blood, get deposited in skin and other organs, and excreted in urine and feces. Depending on the site of defect, different types of porphyrias are described with varying clinical features, severity, and the nature of accumulated porphyrin.
 
Porphyria has been offered as a possible explanation for the medieval tales of vampires and werewolves; this is because of the number of similarities between the behavior of persons suffering from porphyria and the folklore (avoiding sunlight, mutilation of skin on exposure to sunlight, red teeth, psychiatric disturbance, and drinking of blood to obtain heme).
 
Porphyrias are often missed or wrongly diagnosed as many of them are not associated with definite physical findings, screening tests may yield false-negative results, diagnostic criteria are poorly defined and mild disorders produce an enzyme assay result within ‘normal’ range.
 
Heme is mainly required in bone marrow (for hemoglobin synthesis) and in liver (for cytochromes). Therefore, porphyrias are divided into erythropoietic and hepatic types, depending on the site of expression of disease. Hepatic porphyrias mainly affect the nervous system, while erythropoietic porphyrias primarily affect the skin. Porphyrias are also classified into acute and nonacute (or cutaneous) types depending on clinical presentation (Table 817.1).
 
Table 817.1 Various classification schemes for porphyrias
Classification based on predominant clinical manifestations
Classification based on site of expression of disease
Classification based on mode of clinical presentation
Neuropsychiatric
Hepatic
Acute
1. Acute intermittent porphyria
1. ALA-dehydratase porphyria
1. ALA-dehydratase porphyria (Plumboporphyria)
2. ALA-dehydratase porphyria (Plumboporphyria)
2. Acute intermittent porphyria
2. Acute intermittent porphyria
Cutaneous (Photosensitivity)
3. Hereditary coproporphyria
3. Hereditary coproporphyria
1. Congenital erythropoietic porphyria
4. Variegate porphyria
4. Variegate porphyria
2. Porphyria cutanea tarda
Erythropoietic porphyria
Non-acute (cutaneous)
3. Erythropoietic protoporphyria
1. Congenital erythropoietic porphyria
1. Porphyria cutanea tarda
Mixed (Neuropsychiatric and cutaneous)
2. Erythropoietic protoporphyria
2. Congenital erythropoietic porphyria
1. Hereditary coproporphyria
Hepatic/Erythropoietic
3. Erythropoietic protoporphyria
2. Variegate porphyria
1. Porphyria cutanea tarda
 
 
Inheritance of porphyrias may be autosomal dominant or recessive. Most acute porphyrias are inherited in an autosomal dominant manner (i.e. inheritance of one abnormal copy of gene). Therefore, the activity of the deficient enzyme is 50%. When the level of heme falls in the liver due to some cause, activity of ALA synthase is stimulated leading to increase in the levels of heme precursors up to the point of enzyme defect. Increased levels of heme precursors cause symptoms of acute porphyria. When the heme level returns back to normal, symptoms subside.
 
Accumulation of porphyrin precursors can occur in lead poisoning due to inhibition of enzyme aminolevulinic acid dehydratase in heme biosynthetic pathway. This can mimick acute intermittent porphyria.
 
CLINICAL FEATURES
 
Clinical features of porphyrias are variable and depend on type. Acute porphyrias present with symptoms like acute and severe abdominal pain/vomiting/constipation, chest pain, emotional and mental disorders, seizures, hypertension, tachycardia, sensory loss, and muscle weakness. Cutaneous porphyrias present with photosensitivity (redness and blistering of skin on exposure to sunlight), itching, necrosis of skin and gums, and increased hair growth over the temples (Table 817.2).
 
Table 817.2 Clinical characteristics of porphyrias
Porphyria Deficient enzyme Clinical features Inheritance Initial test
1. Acute intermittent porphyria (AIP)* PBG deaminase Acute neurovisceral attacks; triggering factors+ (e.g. drugs, diet restriction) Autosomal dominant Urinary PBG; urine becomes brown, red, or black on standing
2. Variegate porphyria Protoporphyrinogen oxidase Acute neurovisceral attacks + skin fragility, bullae Autosomal dominant Urinary PBG
3. Hereditary coproporphyria Coproporphyrinogen oxidase Acute neurovisceral attacks + skin fragility, bullae Autosomal dominant Urinary PBG
4. Congenital erythropoietic porphyria Uroporphyrinogen cosynthase Onset in infancy; skin fragility, bullae; extreme photosensitivity with mutilation; red teeth and urine (pink red urinestaining of diapers) Autosomal recessive Urinary/fecal total porphyrins; ultraviolet fluorescence of urine, feces, and bones
5. Porphyria cutanea tarda* Uroporphyrinogen decarboxylase Skin fragility, bullae Autosomal dominant (some cases) Urinary/fecal total porphyrins
6. Erythropoietic protoporphyria* Ferrochelatase Acute photosensitivity Autosomal dominant Free erythrocyte protoporphyrin
Disorders marked with * are the three most common porphyrias. PBG: Porphobilinogen
  
Symptoms can be triggered by drugs (barbiturates, oral contraceptives, diazepam, phenytoin, carbamazepine, methyldopa, sulfonamides, chloramphenicol, and antihistamines), emotional or physical stress, infection, dieting, fasting, substance abuse, premenstrual period, smoking, and alcohol. Autosomal dominant porphyrias include acute intermittent porphyria, variegate porphyria, porphyria cutanea tarda, erythropoietic protoporphyria (most cases), and hereditary coproporphyria. Autosomal recessive porphyrias include: congenital erythropoietic porphyria, erythropoietic protoporphyria (few cases), and ALAdehydratase porphyria (plumboporphyria).
 
LABORATORY DIAGNOSIS
 
Porphyria can be diagnosed through tests done on blood, urine, and feces during symptomatic period. Timely and accurate diagnosis is required for effective management of porphyrias. Due to the variability and a broad range of clinical features, porphyrias are included under differential diagnosis of many conditions. All routine hospital laboratories usually have facilities for initial investigations in suspected cases of porphyrias; laboratory tests for identification of specific type of porphyrias are available in specialized laboratories.
 
INITIAL STUDIES
 
In suspected acute porphyrias (acute neurovisceral attack), a fresh randomly collected urine sample (10-20 ml) should be submitted for detection of excessive urinary excretion of porphobilinogen (PBG) (see Figure 817.2). In AIP, urine becomes red or brown on standing (see Figure 817.3). In suspected cases of cutaneous porphyrias (acute photosensitivity without skin fragility), free erythrocyte protporphyrin or FEP in EDTA blood (for diagnosis of erythrocytic protoporphyria) and for all other cutaneous porphyrias (skin fragility and bullae), examination of fresh, random urine (10-20 ml) and either feces (5-10 g) or plasma for excess porphyrins are necessary (see Figure 817.4 and Table 817.2).
 
Figure 817.2 Evaluation of acute neurovisceral porphyria
 Figure 817.2 Evaluation of acute neurovisceral porphyria
 
Figure 817.3 Red coloration of urine on standing in acute intermittent porphyria
Figure 817.3 Red coloration of urine on standing in acute intermittent porphyria
 
Figure 817.4 Evaluation of cutaneous porphyrias
Figure 817.4 Evaluation of cutaneous porphyrias
 
Apart from diagnosis, the detection of excretion of a particular heme intermediate in urine or feces can help in detecting site of defect in porphyria. Heme precursors up to coproporphyrinogen III are water-soluble and thus can be detected in urine. Protoporphyrinogen and Protoporphyrin are insoluble in water and are excreted in bile and can be detected in feces. All samples should be protected from light.
 
Samples required are
 
  1. 10-20 ml of fresh random urine sample without any preservative;
  2. 5-10 g wet weight of fecal sample, and
  3. blood anticoagulated with EDTA.
 
Test for Porphobilinogen in Urine
 
Ehrlich’s aldehyde test is done for detection of PBG. Ehrlich’s reagent (p-dimethylaminobenzaldehyde) reacts with PBG in urine to produce a red color. The red product has an absorption spectrum with a peak at 553 nm and a shoulder at 540 nm. Since both urobilinogen and porphobilinogen produce similar reaction, further testing is required to distinguish between the two. Urobilinogen can be removed by solvent extraction. (See Watson-Schwartz test). Levels of PBG may be normal or near normal in between attacks. Therefore, samples should be tested during an attack to avoid false-negative results.
 
Test for Total Porphyrins in Urine
 
Total porphyrins can be detected in acidified urine sample by spectrophotometry (Porphyrins have an intense absorbance peak around 400 nm). Semiquantitative estimation of porphyrins is possible.
 
Test for Total Porphyrins in Feces
 
Total porphyrins in feces can be determined in acidic extract of fecal sample by spectrophotometry; it is necessary to first remove dietary chlorophyll (that also absorbs light around 400 nm) by diethyl ether extraction.
 
Tests for Porphyrins in Erythrocytes and Plasma
 
Visual examination for porphyrin fluorescence, and solvent fractionation and spectrophotometry have now been replaced by fluorometric methods.
 
Further Testing
 
If the initial testing for porphyria is positive, then concentrations of porphyrins should be estimated in urine, feces, and blood to arrive at specific diagnosis (Tables 817.3 and 817.4).
 
Table 817.3 Diagnostic patterns of concentrations of heme precursors in acute porphyrias
Porphyria Urine Feces
Acute intermittent porphyria PBG, Copro III
Variegate porphyria PBG, Copro III Proto IX
Hereditary coproporphyria PBG, Copro III Copro III
PBG: Porphobilinogen; Copro III: Coproporphyrinogen III; Proto IX: Protoporphyrin IX
 
Table 817.4 Diagnostic patterns of concentrations of heme precursors in cutaneous porphyrias
Porphyria Urine Feces Erythrocytes
Congenital erythropoietic porphyria Uro I, Copro I Copro I
Porphyria cutanea tarda Uroporphyrin Isocopro
Erythropoietic protoporphyria Protoporphyrin
Uro I: Uroporphyrinogen I; Copro I: Coproporphyrinogen I; Isocopro: Isocoproporphyrinogen
 
In latent porphyrias and in patients during remission, porphyrin levels may be normal; in such cases, enzymatic and DNA testing is necessary for diagnosis.
 
If porphyria is diagnosed, then it is necessary to investigate close family members for the disorder. Positive family members should be counseled regarding triggering factors.
This is done by flow cytometric analysis for detection of lack of GpIb/IX in Bernanrd Soulier syndrome (deficiency of CD42), and lack of GpIIb/IIIa in Glanzmann’s thrombasthenia (deficiency of CD41, CD61).
 
What is the best protocol for platelet glycoprotein (GPIIb/IIIa) analysis using flow cytometry?
 
Fresh platelets should always be used. Storing platelets dramatically changes the level of transmembrane proteins. The best way is to follow one of standardized protocols defined in: Immunophenotypic analysis of platelets. Krueger LA, Barnard MR, Frelinger AL 3rd, Furman MI, Michelson AD.Curr Protoc Cytom. 2002 Feb;Chapter 6:Unit 6.10

TEST FOR D-DIMER

  • 03 Aug 2017
D-dimer is derived from the breakdown of fibrin by plasmin and D-dimer test is used to evaluate fibrin degradation. Blood sample can be either serum or plasma. Latex or polystyrene microparticles coated with monoclonal antibody to D-dimer are mixed with patient’s sample and observed for microparticle agglutination. As the particle is small, turbidometric endpoint can be determined in automated instruments. D-dimer and FDPs are raised in disseminated intravascular coagulation, intravascular thrombosis (myocardial infarction, stroke, venous thrombosis, pulmonary embolism), and during postoperative period or following trauma. D-dimer test is commonly used for exclusion of thrombosis and thrombotic tendencies.
 
Further Reading:
 
FDPs are fragments produced by proteolytic digestion of fibrinogen or fibrin by plasmin. For determination of FDPs, blood is collected in a tube containing thrombin (to remove all fibrinogen by converting it into a clot) and soybean trypsin inhibitor (to inhibit plasmin and thus prevent in vitro breakdown of fibrin). A suspension of latex particles linked to antifibrinogen antibodies (or fragments D and E) is mixed with dilutions of patient’s serum on a glass slide. If FDPs are present, agglutination of latex particles occurs (see Figure 814.1). The highest dilution of serum at which agglutination is detected is used to determine concentration of FDPs. Increased levels of FDPs occur in fibrinogenolysis or fibrinolysis. This occurs in disseminated intravascular coagulation, deep venous thrombosis, severe pneumonia, and recent myocardial infarction.
Because diagnoses and treatment plans are made based on laboratory findings, it is imperative that the equipment utilized in the lab be in excellent working order, serviced at regular intervals, calibrated and cleaned as recommended by the manufacturer, and used properly. In addition to properly functioning equipment, there are things the technician can do to improve the accuracy of their test results:
 
  1. Follow manufacturer directions precisely.
  2. Become familiar with normal and abnormal findings.
  3. Log all activity of equipment, including daily, weekly, and monthly servicing.
  4. Save enough sample to perform tests more than once to verify accuracy of findings.

 

Remember, all laboratory equipment and its results are only as reliable as the human operating the equipment!
Routine care and proper maintenance of microscope will ensure good performance over the years. In addition to this, a properly maintained and clean microscope will always be ready for use at any time. Professional cleaning and maintenance should be considered when routine techniques fail to produce optimal performance of the microscope.
 
Cleaning and maintenance supplies
 
Dust cover: When not in use, a microscope should be covered to protect it from dust, hair, and any other possible sources of dirt. It is important to note that a dust cover should never be placed over a microscope while the illuminator is still on.
 
Lens tissue: Lint-free lens tissues are delicate wipes that would not scratch the surface of the oculars or objective. Always ensure that you are using these types of tissues. Never substitute facial tissue or paper towel, as they are too abrasive.
 
Lens cleaner: Lens cleaning solution assists in removing fingerprints and smudges on lenses and objectives. Apply the lens cleaner to the lens tissue paper and clean/polish the surface.
 
Compressed air duster: Using compressed air to rid the microscope of dust particles is far superior to using your own breath and blowing onto the microscope. Compressed air is clean, and avoids possible contamination of saliva particles.
 
Maintenance tips
 
  1. Whenever the microscope is not in use, turn off the illuminator. This will greatly extend the life of the bulb, as well as keep the temperature down during extended periods of laboratory work.
  2. When cleaning the microscope, use distilled water or lens cleaner. Avoid using other chemicals or solvents, as they may be corrosive to the rubber or lens mounts.
  3. After using immersion oil, clean off any residue immediately. Avoid rotating the 40× objective through immersion oil. If this should occur, immediately clean the 40× objective with lens cleaner before the oil has a chance to dry.
  4. Do not be afraid to use many sheets of lens tissue when cleaning. Use a fresh piece (or a clean area of the same piece) when moving to a different part of the microscope. This avoids tracking dirt/oil/residue to other areas of the microscope.
  5. Store the microscope safely with the stage lowered and the smallest objective in position (4× or 10×). This placement allows for the greatest distance between the stage and the objective. If the microscope is bumped, the likelihood of an objective becoming damaged by the stage surface will be greatly minimized.
Automated hematology analyzers work on different principles:
 
  • Electrical impedance
  • Light scatter
  • Fluorescence
  • Light absorption
  • Electrical conductivity.
 
Most analyzers are based on a combination of different principles.
 
(1) Electrical impedance: This is the classic and timetested technology for counting cellular elements of blood. As this method of cell counting was first developed by Coulter Electronics, it is also called as Coulter principle (see Figure 811.1). Two electrodes placed in isotonic solutions are separated by a glass tube having a small aperture. A vacuum is applied and as a cell passes through the aperture, flow of current is impeded and a voltage pulse is generated.
 
Figure 811.1 Coulter principle of electrical impedance
Figure 811.1 Coulter principle of electrical impedance
 
The requisite condition for cell counting by this method is high dilution of sample so that minimal numbers of cells pass through the aperture at one point of time. There are two electrodes on either side of the aperture; as the solution in which the cells are suspended is an electrolyte solution, an electric current is generated between the two electrodes. When a cell passes through this narrow aperture across which a current is flowing, change in electrical resistance (i.e. momentary interruption of electrical current between the two electrodes) occurs. A small pulse is generated due to a temporary increase in impedance. This pulse is amplified, measured, and counted. The height of the pulse is proportional to cell volume. The width of the pulse corresponds with the time required for the cell to traverse the aperture. Cells that do not pass through the center of the aperture generate a distorted pulse that is not representative of the cell volume. Some analyzers use hydrodynamic focusing to force the cells through the central path so that all cells take the same path for volume measurement.
 
An anticoagulated whole blood sample is aspirated into the system, divided into two portions, and mixed with a diluent. One dilution is passed to the red cell aperture bath (for red cell and platelet counting), and the other is delivered to the WBC aperture bath (where a reagent is added for lysis of red cells and release hemoglobin; this portion is used for leukocyte counting followed by estimation of hemoglobin). Particles between 2-20 fl are counted as platelets, while those between 36-360 fl are counted as red cells. Hemoglobin is estimated by light transmission at 535 nm.
 
(2) Light scatter: Each cell flows in a single line through a flow cell. A laser device is focused on the flow cell; as the laser light beam strikes a cell it is scattered in various directions. One detector captures the forward scatter light (forward angle light scatter or FALS) that is proportional to cell size and a second detector captures side scatter (SS) light (90°) that corresponds to the nuclear complexity and granularity of cytoplasm. This simultaneous measurement of light scattered in two directions is used for distinguishing between granulocytes, lymphocytes, and monocytes.
 
(3) Fluorescence: Cellular fluorescence is used to measure RNA (reticulocytes), DNA (nucleated red cells), and cell surface antigens.
 
(4) Light absorption: Concentration of hemoglobin is measured by absorption spectrophotometry, after conversion of hemoglobin to cyanmethemoglobin or some other compound. In some analyzers, peroxidase cytochemistry is used to classify leukocytes; the peroxidase activity is determined by absorbance.
 
(5) Electrical conductivity: Some analyzers use conductivity of high frequency current to determine physical and chemical composition of leucocytes for their classification.
 
Further Reading:
 
AUTOMATED HEMOTOLOGY ANALYZER
 
Automation is a process of replacement of tasks hitherto performed by humans by computerized methods.
 
Until recently, hematological tests were performed only by manual methods. These methods, though still performed in many peripheral laboratories, are laborintensive, and involve use of hemocytometers (counting chambers), centrifuges, Wintrobe tubes, photometers, and stained blood smears. Hematology cell analyzers can generate the blood test results rapidly and also perform additional tests not possible by manual technology.
 
Both manual and automated laboratory techniques have advantages and disadvantages, and it is unlikely that one will completely replace the other.
 
Advantages of Automated Hematology Analyzer
 
  • Speed with efficient handling of a large number of samples.
  • Accuracy and precision in quantitative blood tests.
  • Ability to perform multiple tests on a single platform.
  • Significant reduction of labor requirements.
  • Invaluable for accurate determination of red cell indices.
 
Disadvantages of Automated Hematology Analyzer
 
  • Flags: Flagging of a laboratory test result demands labour-intensive manual examination of a blood smear.
  • Comments on red cell morphology cannot be generated. Abnormal red cell shapes (such as fragmented cells) cannot be recognized.
  • Erroneously increased or decreased results due to interfering factors.
  • Expensive with high running costs.
 
Automated hematology analyzers are of two main types:
 
  • Semi-automated: Some steps like dilution of blood sample are performed by the technologist; can measure only a few parameters.
  • Fully automated: Require only anticoagulated blood sample; measure multiple parameters.
CAUSES OF ERRONEOUS RESULTS (INTERFERENCES CAUSING ABNORMAL RESULT)
 
These are listed in Table 809.1
 
Table 809.1 Causes of erroneous results with hematology analyzer
Parameter Interfering factors
  Erroneous increase Erroneous decrease
0. All parameters
  • Clotted sample
1. WBC count
  • Nucleated red cells
  • Large platelet clumps
  • Unlysed red cells (some abnormal red cells resist lysing)
  • Cryoglobulins
  • Clotted sample
2. RBC count
  • Very high WBC*
  • Large numbers of giant platelets
  • Clotted sample
  • Microcytic red cells
  • Autoagglutination
3. Hemoglobin
  • Clotted sample
4. MCV
  • Very high WBC
  • Hyperglycemia
  • Autoagglutination (cold agglutinins)
  • Cryoglobulins
5. MCHC
  • Hyperlipidemia
  • Autoagglutination (cold agglutinins)
  • Very high WBC
6. Platelets
  • Microcytic red cells
  • WBC fragments
  • Cryoglobulins
  • Platelet satellitism
  • Platelet clumping
*: WBCs are counted along with RBCs, but normally their number is statistically insignificant
 
 
FLAGGING
 
‘Flags’ are signals that occur when an abnormal result is detected by the analyzer. Flags are displayed to reduce false-positive and false-negative results by mandating a review of blood smear examination.
Parameters measured by hematology analyzers and their derivation are shown in Tables 808.1 and 808.2. Most automated hematology analyzers measure red cell count, red cell indices (mean cell volume, mean cell hemoglobin, mean cell hemoglobin concentration), hemoglobin, hematocrit, total leukocyte count, differential leukocyte count (three-part or five-part), and platelet count.
 
Table 808.1 Parameters measured by hematology analyzers
Parameters measured by most analyzers Parameters measured by some analyzers
  • RBC count
  • Hemoglobin
  • Mean cell volume
  • Mean cell hemoglobin
  • Mean cell hemoglobin concentration
  • WBC count
  • WBC differential
  • Platelet count
  • Red cell distribution width
  • Reticulocyte count
  • Reticulocyte hemoglobin content
  • Mean platelet volume
  • Platelet distribution width
  • Reticulated platelets
 
Table 808.2 Parameters reported by hematology analyzers
Parameters measured directly or derived through histogram Parameters measured through calculation
  • RBC count
  • Mean cell volume (Derived from RBC histogram)
  • Red cell distribution width (Derived from RBC histogram)
  • Hemoglobin
  • Reticulocyte count
  • WBC count
  • Differential WBC count (Derived through WBC histogram)
  • Platelet count
  • Mean platelet volume (Derived from platelet histogram)
  • Hematocrit
  • Mean cell hemoglobin
  • Mean cell hemoglobin concentration
 
Estimation of Hemoglobin
 
Hemoglobin is measured directly by a modification of cyanmethemoglobin method (all hemoglobins are converted to cyanmethemoglobin by potassium ferricyanide; cyanmethemoglobin has a broad absorbance peak at 540 nm). Some analyzers use a nonhazardous reagent such as sodium lauryl sulphate. A non-ionic detergent is added for rapid red cell lysis and to minimize turbidity caused by cell membranes and plasma lipids.
 
Estimation of Red Blood Cell Count and Mean Cell Volume (MCV)
 
Red cell count and cell volume are directly measured by aperture impedance or light scatter analysis. In a red cell histogram, cell numbers are plotted on Y-axis, while cell volume is indicated on Xaxis (see Figure 808.1). The analyzer counts those cells as red cells volume of which ranges between 36 fl and 360 fl. MCV is used for morphological classification of anemia into microcytic, macrocytic, and normocytic types.
 
Figure 808.1 Diagrammatic representation of red cell histogram obtained by aperture impedance
Figure 808.1 Diagrammatic representation of red cell histogram obtained by aperture impedance. The analyzer counts cells between 36 fl and 360 fl as red cells. Although leukocytes are present and counted along with red cells in the diluting fluid, their number is not statistically significant. Only if leukocyte count is markedly elevated (>50,000/μl), histogram and the red cell count will be affected. Area of the peak between 60 fl and 125 fl is used for calculation of mean cell volume and red cell distribution width. Abnormalities in red cell histogram include: (1) Left shift of the curve in microcytosis, (2) Right shift of the curve in macrocytosis, and (3) Bimodal peak of the curve in double (dimorphic) population of red cells
 
Estimation of MCH, MCHC, and Hematocrit (HCT/PCV)
 
These parameters are obtained indirectly through calculations.
 
 
MCH (pg) = Hemoglobin (g/l)
                     RBC count (10⁶/μl)
 
 
MCHC (g/dl) = Hemoglobin (g/dl)
                         Hematocrit (%)
 
 
Hematocrit (%) = Mean Cell Volume (fl)
                              RBC count (10⁶/μl)
 
 
Estimation of Red Cell Distribution Width (RDW)
 
RDW is a quantitative measure of variation in sizes of red cells and is expressed as coefficient of variation of red cell size distribution. It is equivalent to anisocytosis observed on blood smear. It is derived from red cell histogram in some analyzers. RDW is usually elevated in iron deficiency anemia, but not in β-thalassemia minor and anemia of chronic disease (other causes of microcytic anemia). However, this distinction is not absolute and there is a significant overlap between values among patients. Raised RDW requires examination of blood smear.
 
Among the red cell values generated by the analyzer (red cell count, hemoglobin, hematocrit, MCV, MCH, MCHC, and RDW), most important for decision-making are hemoglobin, hematocrit, and MCV.
 
WBC Differential
 
Difference between 3-part and 5-part hemotology analyzer...
 
Hematology analyzers can either generate a 3-part differential (differential count reported as lymphocytes, monocytes, and granulocytes) or a 5-part differential (lymphocytes, monocytes, neutrophils, eosinophils, and basophils). The 3-part differential counting is based on electrical impedance volume measurement of leukocytes. In volume histogram for WBCs, approximate numbers of cells are plotted on Y-axis and cell size on X-axis. Those cells with volume 35-90 fl are designated as lymphocytes, cells with volume 90-160 fl as mononuclear cells, and cells with volume 160-450 fl as neutrophils (see Figure 808.2). Any deviation from the expected histogram is flagged by the analyzer, mandating review of blood smear. A large proportion of 3-part differential counts are ‘flagged’ to avoid missing abnormal cells.
 
Instruments measuring a 5-part differential work on a combination of different principles, e.g. light scatter, impedance, and electrical conductivity, a combination of light scatter, peroxidase staining, and resistance of basophils to lysis in acid buffer, etc.
 
Figure 808.2 Diagrammatic representation of WBC histogram
Figure 808.2 Diagrammatic representation of WBC histogram. WBC histogram analysis shows relative numbers of cells on Y-axis and cell size on X-axis. The lytic agent lyses the cytoplasm that collapses around the nucleus causing differential shrinkage. The analyzer sorts the WBCs according to the nuclear size into 3 main groups (3-part differential): Cells with 35-90 fl volume are designated as lymphocytes, cells with 90-160 fl volume are designated as monocytes, and cells with 160-450 fl volume are designated as neutrophils. Abnormalities in WBC histogram include: (1) Peak to the left of lymphocyte peak: Nucleated red cells, (2) Peak between lymphocytes and monocytes: Blast cells, eosinophilia, basophilia, plasma cells, and atypical lymphocytes, and (3) Peak between monocytes and neutrophils: Left shift
 
Platelet Count
 
Platelets are difficult to count because of their small size, marked variation in size, tendency to aggregation, and overlapping of size with microcytic red cells, cellular fragments, and other debris. In hematology analyzers, this difficulty is addressed by mathematical analysis of platelet volume distribution so that it corresponds to lognormal distribution. Platelets are counted by electrical impedance method in the RBC aperture, and a histogram is generated with platelet volume on X-axis and relative cell frequency on Y-axis (see Figure 808.3). Normal platelet histogram consists of a right-skewed single peak. Particles greater than 2 fl and less than 20 fl are classified as platelets by the analyzer.
 
Figure 808.3 Diagrammatic representation of normal platelet histogram
Figure 808.3 Diagrammatic representation of normal platelet histogram: Counting and sizing of platelets by electrical impedance method occurs in the RBC aperture. The counter designates particles between sizes 2 fl and 20 fl as platelets. Abnormalities in platelet histogram result from interferences such as cytoplasmic fragments (peak at left end of histogram) or severely microcytic red cells and giant platelets (peak at right end of histogram)
 
Two other platelet parameters can be obtained from platelet histogram using computer technology: mean platelet volume (MPV) and platelet distribution width (PDW). Some analyzers can generate another parameter called as reticulated platelets.
 
MPV refers to the average size of platelets and is obtained from mathematical calculation. Normal MPV is 7-10 fl. Increased MPV (> 10 fl) results from presence of immature platelets in circulation; peripheral destruction of platelets stimulates megakaryocytes to produce such platelets (e.g. in idiopathic thrombocytopenic purpura). Decreased MPV (< 7 fl) is due to presence of small platelets in circulation (in conditions associated with reduced production of platelets in bone marrow).
 
PDW is analogous to RDW and is a measure of variation in size of platelets (normal <20%). Increased PDW is observed in megaloblastic anemia, chronic myeloid leukemia, and after chemotherapy.
 
Some analyzers measure reticulated platelets or young platelets that contain RNA (similar to reticulocytes). Increased numbers of reticulated platelets are seen in thrombocytopenia due to peripheral destruction of platelets.

Reticulocyte Count
 
Various fluorescent dyes can combine with RNA of reticulocytes; the fluorescence then is counted in a flow cytometer. More immature reticulocytes fluoresce more strongly as they contain more RNA.
 
Reticulocyte hemoglobin content is a parameter that estimates hemoglobinization of most recently produced red cells. It is a predictor of iron deficiency.
 
WBC Cytogram (Scattergram)
 
In the scattergram, each dot represents a cell of a given volume and density, and the positions of dots in the graph are determined by the degree of side scatter, degree of forward scatter, light absorption by the cell, and cytochemical staining (if used). The forward angle light scatter (FALS) is represented on Y-axis, and the side scatter (SS) is represented on X-axis. Low FALS and low SS are indicative of lymphocytes; with subsequent increasing FALS and SS, monocytes, neutrophils, and lastly eosinophils are designated in the graph. Counting of basophils is based on a different technology.
 
Further Reading:
 

FLOW CYTOMETRY

  • 29 Jul 2017
FLOW CYTOMETRY
 
Box 807.1 Properties of a cell measured by a flow cytometerFlow cytometry is a procedure used for measuring multiple cellular and fluorescent properties of cells when they flow as a single cell suspension through a laser beam by a specialized instrument called as a flow cytometer. Flow cytometry can analyze numerous cells in a short time and multiple parameters of a single cell can be analyzed simultaneously. From the measured parameters, specific cell populations are defined. Cells or particles with size 0.2-150 μm are suitable for flow cytometer analysis.
 
Flow cytometry can provide following information about a cell (Box 807.1):
 
  • Cell size (forward scatter)
  • Internal complexity or granularity (side scatter)
  • Relative fluorescence intensity.
 
A flow cytometer consists of three main components or systems: fluidics, optics, and electronics.
 
(1) Fluidics: The function of the fluidics system is to transport cells in a stream to the laser beam for interrogation. Cells (fluorescence-tagged) are introduced into the cytometer (injected into the sheath fluid within the flow chamber) and made to flow in a single file past a laser (light amplification by stimulated emission of radiation) beam. The stream transporting the cells should be positioned in the center of the laser beam. The portion of the fluid stream where the cells are located is called as the sample core. Only a single cell or particle should pass through the laser beam at one time. Flow cytometers use the principle of hydrodynamic focusing (process of centering the sample core within the sheath fluid) for presenting cells to the laser.
 
(2) Optics: This system consists of lasers for illumination of cells in the sample, and filters to direct the generated light signals to the appropriate detectors.
 
The light source used in most flow cytometers is laser.
 
The laser most commonly used in flow cytometry is Argon-ion laser. The light signals are generated when the laser beam strikes the cell, which are then collected by appropriately positioned lenses. A system of optical mirrors and filters then directs the specified wavelengths of light to the designated detectors. Two types of light signals are generated when the laser beam strikes cells tagged with fluorescent molecules: fluorescence and light scatter. The cells tagged with fluorescence emit a momentary pulse of fluorescence; in addition, two types of light scatter are measured: forward scatter (proportional to cell diameter) and side scatter (proportional to granularity of cell).
 
(3) Electronics: The optical signals (photons) are converted to corresponding electronic signals (electrons) by the photodetectors (photodiodes and photomultiplier tubes). The electronic signal produced is proportional to the amount of light striking a cell. The electric current travels to the amplifier and is converted to a voltage pulse. The voltage pulse is assigned a digital value representing a channel by the Analog-to Digital Converter (ADC). The channel number is then transferred to the computer which displays it to the appropriate position on the data plot.
 
Further Reading:
 
  1. Leukemias and lympomas: Immunophenotyping (evaluation of cell surface markers), diagnosis, detection of minimal residual disease, and to identify prognostically important subgroups.
  2. Paroxysmal nocturnal hemoglobinuria: Deficiency of CD 55 and CD 59.
  3. Hematopoietic stem cell transplantation: Enumeration of CD34+ stem cells.
  4. Feto-maternal hemorrhage: Detection and quantitation of foetal hemoglobin in maternal blood sample.
  5. Anemias: Reticulocyte count.
  6. Human immunodeficiency virus infection: For enumeration of CD4+ lymphocytes.
  7. Histocompatibility cross matching.
Platelet aggregation tests are carried out in specialized hematology laboratories if platelet dysfunction is suspected. These tests are usually indicated in patients presenting with mucocutaneous type of bleeding and in whom screening tests reveal normal platelet count, prolonged bleeding time, normal prothrombin time, and normal activated partial thromboplastin time. Platelet aggregation studies are carried out on platelet-rich plasma using aggregometer. When a platelet aggregating agent is added to platelet-rich plasma, platelets form aggregates and optical density falls (or light transmission increases); this is recorded by a chart recorder on a strip chart. Commonly used platelet aggregating agents are ADP (adenosine 5-diphosphate), epinephrine (adrenaline), collagen, arachidonic acid, and ristocetin. ADP (low dose) and epinephrine induce primary and secondary waves of aggregation (biphasic curve). Primary wave is due to the direct action of aggregating agent on platelets. Secondary wave is due to thromboxane A2 synthesis and secretion from platelets. Collagen, arachidonic acid and ristocetin induce a single wave of aggregation (monophasic curve) Normal aggregation curve is shown in Figure 804.1. Aggregation patterns in various platelet function defects are shown in Figures 804.2 to 804.4, and in Table 804.1.
 
Figure 804.1 Normal platelet aggregation curves
Figure 804.1 Normal platelet aggregation curves
 
Figure 804.2 Platelet aggregation curves in von Willebrand disease and Bernard Soulier syndrome absent aggregation with ristocetin normal aggregation with ADP epinephrine and arachidonic acid
Figure 804.2 Platelet aggregation curves in von Willebrand disease and Bernard-Soulier syndrome (absent aggregation with ristocetin, normal aggregation with ADP, epinephrine, and arachidonic acid)
 
Figure 804.3 Platelet aggregation curves in storage pool defect absent second wave of aggregation with ADP and epinephrine absent or greatly diminished aggregation with collagen and normal ristocetin aggregation
Figure 804.3 Platelet aggregation curves in storage pool defect (absent second wave of aggregation with ADP and epinephrine, absent or greatly diminished aggregation with collagen, and normal ristocetin aggregation)
 
Figure 804.4 Platelet aggregation curves in Glanzmanns thrombasthenia absent aggregation with all agonists except ristocetin
Figure 804.4 Platelet aggregation curves in Glanzmann’s thrombasthenia (absent aggregation with all agonists except ristocetin)
Page 2 of 17

Dictionary:

Our Sponsors

We use cookies to improve our website. By continuing to use this website, you are giving consent to cookies being used. More details…